On estimates for Goncharov polynomials
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 57-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following is proved in the article. Theorem. {\it If a sequence of interpolation points satisfies the conditions $|\arg z_n|\leqslant\frac\pi2\left(1-\frac1\rho\right)$ for all sufficiently large $n$ and $\varlimsup_{n\to\infty}n^{-1/\rho}|z_n|=\varlimsup_{n\to\infty}n^{-1/\rho}S_n=1,$ where $S_n=\sum_{\nu=0}^{n-1}|z_\nu-z_{\nu+1}|,$ for $1\leqslant\rho<\infty,$ and $\arg z_n=0,$ $z_n\leqslant z_{n+1}$ $(n=0,1,\dots),$ $\lim_{n\to\infty}n^{-1/\rho}z_n=1$ for $0<\rho<1,$ then the assertions} 1) $\varlimsup_{n\to\infty}\{n^{-n/\rho}n!\max_{|z|\leqslant r}|P_n(z)|\}^{1/n}\equiv1$ for $1\leqslant\rho<\infty$, 2) $\frac1\rho\exp\left(1-\frac1\rho\right)\leqslant\varlimsup_{n\to\infty}\{n^{-n/\rho}n!\max_{|z|\leqslant r}|P_n(z)|\}^{1/n}\leqslant1$ for $0<\rho<1$ \noindentare valid for any $r<\infty$. Here $P_n(z)$ is the Goncharov polynomial of degree $n$. Bibliography: 3 titles.
@article{SM_1973_21_1_a2,
     author = {V. A. Oskolkov},
     title = {On~estimates for {Goncharov} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {57--62},
     year = {1973},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a2/}
}
TY  - JOUR
AU  - V. A. Oskolkov
TI  - On estimates for Goncharov polynomials
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 57
EP  - 62
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_1_a2/
LA  - en
ID  - SM_1973_21_1_a2
ER  - 
%0 Journal Article
%A V. A. Oskolkov
%T On estimates for Goncharov polynomials
%J Sbornik. Mathematics
%D 1973
%P 57-62
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1973_21_1_a2/
%G en
%F SM_1973_21_1_a2
V. A. Oskolkov. On estimates for Goncharov polynomials. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a2/

[1] M. A. Evgrafov, “Metod blizkikh sistem v prostranstve analiticheskikh funktsii i ego primeneniya k interpolyatsii”, Trudy Mosk. matem. ob-va, V (1956), 89–201 | MR

[2] V. L. Goncharov, “Recherches sur les dérivées successives des fonctions analytiques. Généralisation de la série d'Abel”, Ann. Ecole Norm. super, 47 (1930), 1–78

[3] I. I. Ibragimov, Metody interpolyatsii funktsii i nekotorye ikh primeneniya, izd-vo «Nauka», Moskva, 1965 | MR