Equivalent norms in spaces of entire functions
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 33-55
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that if $E\subset\mathbf R^n$ is relatively dense with respect to Lebesgue mesure and $p\in(0,\infty)$, then for any entire function $f(z)$ of $n$ complex variables and of exponential type not exceeding $\sigma$ the inequality
$$
\int_E|f(x)|^p\,dx_1\dots dx_n\geqslant c\int_{\mathbf R^n}|f(x)|^p\,dx_1\dots dx_n
$$
is satisfied, where $c$ is a constant depending only on $\sigma$, $L$, $\delta$ and $p$, but not on $f(z)$, and the integrals on both sides of the inequality converge or diverge simultaneously.
Bibliography: 11 titles.
@article{SM_1973_21_1_a1,
author = {V. \`E. Katsnelson},
title = {Equivalent norms in spaces of entire functions},
journal = {Sbornik. Mathematics},
pages = {33--55},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a1/}
}
V. È. Katsnelson. Equivalent norms in spaces of entire functions. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 33-55. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a1/