Equivalent norms in spaces of entire functions
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 33-55

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if $E\subset\mathbf R^n$ is relatively dense with respect to Lebesgue mesure and $p\in(0,\infty)$, then for any entire function $f(z)$ of $n$ complex variables and of exponential type not exceeding $\sigma$ the inequality $$ \int_E|f(x)|^p\,dx_1\dots dx_n\geqslant c\int_{\mathbf R^n}|f(x)|^p\,dx_1\dots dx_n $$ is satisfied, where $c$ is a constant depending only on $\sigma$, $L$, $\delta$ and $p$, but not on $f(z)$, and the integrals on both sides of the inequality converge or diverge simultaneously. Bibliography: 11 titles.
@article{SM_1973_21_1_a1,
     author = {V. \`E. Katsnelson},
     title = {Equivalent norms in spaces of entire functions},
     journal = {Sbornik. Mathematics},
     pages = {33--55},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a1/}
}
TY  - JOUR
AU  - V. È. Katsnelson
TI  - Equivalent norms in spaces of entire functions
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 33
EP  - 55
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_1_a1/
LA  - en
ID  - SM_1973_21_1_a1
ER  - 
%0 Journal Article
%A V. È. Katsnelson
%T Equivalent norms in spaces of entire functions
%J Sbornik. Mathematics
%D 1973
%P 33-55
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_1_a1/
%G en
%F SM_1973_21_1_a1
V. È. Katsnelson. Equivalent norms in spaces of entire functions. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 33-55. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a1/