Uniqueness theorems for analytic functions asymptotically representable by Dirichlet--Taylor series
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 603-649

Voir la notice de l'article provenant de la source Math-Net.Ru

Dirichlet–Taylor series $$ \sum^\infty_{j=1}d_je^{-\lambda_j s}s^{s_j-1} $$ are considered, where $\{d_j\}^\infty_1$ is a sequence of complex numbers, $\{\lambda_j\}^\infty_1$ is a nondecreasing sequence of positive numbers, and $s_j\geqslant1$ ($j\geqslant1$) is the number of times $\lambda_j$ occurs in the segment $\{\lambda_1,\dots,\lambda_j\}$. An “adherence principle” is established for these series. As applications of this principle, uniqueness theorems are proved for analytic functions which are asymptotically representable by partial sums of Dirichlet–Taylor series in strips. Bibliography: 16 titles.
@article{SM_1973_20_4_a7,
     author = {M. M. Dzhrbashyan},
     title = {Uniqueness theorems for analytic functions asymptotically representable by {Dirichlet--Taylor} series},
     journal = {Sbornik. Mathematics},
     pages = {603--649},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a7/}
}
TY  - JOUR
AU  - M. M. Dzhrbashyan
TI  - Uniqueness theorems for analytic functions asymptotically representable by Dirichlet--Taylor series
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 603
EP  - 649
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_4_a7/
LA  - en
ID  - SM_1973_20_4_a7
ER  - 
%0 Journal Article
%A M. M. Dzhrbashyan
%T Uniqueness theorems for analytic functions asymptotically representable by Dirichlet--Taylor series
%J Sbornik. Mathematics
%D 1973
%P 603-649
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_4_a7/
%G en
%F SM_1973_20_4_a7
M. M. Dzhrbashyan. Uniqueness theorems for analytic functions asymptotically representable by Dirichlet--Taylor series. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 603-649. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a7/