Functional equations and local conjugacy of mappings of class~$C^\infty$
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 587-602

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved on conjugacy of $C^\infty$ mappings in a neighborhood of a fixed point, under the assumption of formal conjugacy. In constrast to a well-known theorem of Sternberg, we assume the existence of a linear approximation of points of the spectrum on the unit circle and at zero. We establish theorems on conjugacy in a subgroup of the group of diffeomorphisms, and give conditions for the existence of local solutions of more general functional equations. A fixed-point principle is used in the proof. Bibliography: 14 titles.
@article{SM_1973_20_4_a6,
     author = {G. R. Belitskii},
     title = {Functional equations and local conjugacy of mappings of class~$C^\infty$},
     journal = {Sbornik. Mathematics},
     pages = {587--602},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/}
}
TY  - JOUR
AU  - G. R. Belitskii
TI  - Functional equations and local conjugacy of mappings of class~$C^\infty$
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 587
EP  - 602
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/
LA  - en
ID  - SM_1973_20_4_a6
ER  - 
%0 Journal Article
%A G. R. Belitskii
%T Functional equations and local conjugacy of mappings of class~$C^\infty$
%J Sbornik. Mathematics
%D 1973
%P 587-602
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/
%G en
%F SM_1973_20_4_a6
G. R. Belitskii. Functional equations and local conjugacy of mappings of class~$C^\infty$. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 587-602. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/