Functional equations and local conjugacy of mappings of class~$C^\infty$
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 587-602
Voir la notice de l'article provenant de la source Math-Net.Ru
Theorems are proved on conjugacy of $C^\infty$ mappings in a neighborhood of a fixed point, under the assumption of formal conjugacy. In constrast to a well-known theorem of Sternberg, we assume the existence of a linear approximation of points of the spectrum on the unit circle and at zero. We establish theorems on conjugacy in a subgroup of the group of diffeomorphisms, and give conditions for the existence of local solutions of more general functional equations. A fixed-point principle is used in the proof.
Bibliography: 14 titles.
@article{SM_1973_20_4_a6,
author = {G. R. Belitskii},
title = {Functional equations and local conjugacy of mappings of class~$C^\infty$},
journal = {Sbornik. Mathematics},
pages = {587--602},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/}
}
G. R. Belitskii. Functional equations and local conjugacy of mappings of class~$C^\infty$. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 587-602. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/