Functional equations and local conjugacy of mappings of class $C^\infty$
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 587-602 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Theorems are proved on conjugacy of $C^\infty$ mappings in a neighborhood of a fixed point, under the assumption of formal conjugacy. In constrast to a well-known theorem of Sternberg, we assume the existence of a linear approximation of points of the spectrum on the unit circle and at zero. We establish theorems on conjugacy in a subgroup of the group of diffeomorphisms, and give conditions for the existence of local solutions of more general functional equations. A fixed-point principle is used in the proof. Bibliography: 14 titles.
@article{SM_1973_20_4_a6,
     author = {G. R. Belitskii},
     title = {Functional equations and local conjugacy of mappings of class~$C^\infty$},
     journal = {Sbornik. Mathematics},
     pages = {587--602},
     year = {1973},
     volume = {20},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/}
}
TY  - JOUR
AU  - G. R. Belitskii
TI  - Functional equations and local conjugacy of mappings of class $C^\infty$
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 587
EP  - 602
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/
LA  - en
ID  - SM_1973_20_4_a6
ER  - 
%0 Journal Article
%A G. R. Belitskii
%T Functional equations and local conjugacy of mappings of class $C^\infty$
%J Sbornik. Mathematics
%D 1973
%P 587-602
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/
%G en
%F SM_1973_20_4_a6
G. R. Belitskii. Functional equations and local conjugacy of mappings of class $C^\infty$. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 587-602. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a6/

[1] H. Poincare, These, Paris, 1879

[2] K. L. Zigel, “O normalnoi forme analiticheskikh differentsialnykh uravnenii v okrestnosti ravnovesnogo resheniya”, Matematika, 5:2 (1961), 119–128

[3] K. L. Zigel, “O suschestvovanii normalnoi formy analiticheskikh differentsialnykh uravnenii Gamiltona v okrestnosti polozheniya ravnovesiya”, Matematika, 5:2 (1961), 129–155

[4] A. D. Bryuno, “O skhodimosti preobrazovanii differentsialnykh uravnenii k normalnoi forme”, DAN SSSR, 165:5 (1965), 987–989 | Zbl

[5] A. D. Bryuno, “Analiticheskaya forma differentsialnykh uravnenii”, Matem. zametki, 6:6 (1969), 771–778, Avtoreferat doktorskoi dissertatsii

[6] S. Sternberg, “The structure of local homeomorphisms”, Amer. J. Math., 81:3 (1959), 578–604 | DOI | MR | Zbl

[7] A. Smajdor, W. Smajdor, “On the existence and uniqueness of analytic solution of a linear functional equations”, Math. Z., 98:3 (1967), 235–242 | DOI | MR | Zbl

[8] W. Smajdor, “Local analytic solution of the functional equation $\varphi(z)=h(z,\varphi(f(z)))$ in multidimensional space”, Aequat. math., 1:1–2 (1968), 20–30 | DOI | MR

[9] A. D. Bryuno, “Normalnaya forma differentsialnykh uravnenii”, DAN SSSR, 157:6 (1964), 1276–1279 | Zbl

[10] G. R. Belitskii, “O lokalnoi sopryazhennosti diffeomorfizmov”, DAN SSSR, 191:3 (1970), 515–518

[11] G. R. Belitskii, “O sopryazhennosti lokalnykh otobrazhenii”, Funkts. analiz, 6:1 (1972), 66–67 | MR

[12] V. I. Arnold, “Osobennosti gladkikh otobrazhenii”, Uspekhi matem. nauk, XXIII:1 (139) (1968), 3–44

[13] A. N. Tychonoff, “Ein Fixfunktsatz”, Math. Ann., 111:5 (1935), 767–776 | DOI | MR | Zbl

[14] G. Polia, G. Sege, Zadachi i teoremy iz analiza, t. 1, Gostekhizdat, Moskva, 1956