On~an estimate for a~Dirichlet polynomial and some of its applications
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 575-586
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $L(\mu)$ be an entire function of exponential type and of completely regular growth, $\overline D$ its conjugate diagram, and $\overline D(\alpha)$ the displacement of $\overline D$ by the vector $\alpha$. Next let $\alpha_1$ and $\alpha_2$ be arbitrary fixed points, and $D_1$ and $D_2$ be regions such that $D_1\supset\overline D(\alpha_1)$ and $D_2\supset\overline D(\alpha_2)$. The estimate
$$
|P(z)|\leqslant N\max(M_1,M_2),\qquad M_j=\max_{t\in\overline D_j}|P(t)|\quad(j=1,2),
$$
where $N$ does not depend on $P(z)$, is established for a Dirichlet polynomial $P(z)$, whose exponents are the zeros of $L(\mu)$, in some region $G$ containing the set $\overline D(\alpha)$, $\alpha\in[\alpha_1,\alpha_2]$. A number of corollaries follow from the estimate.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1973_20_4_a5,
     author = {A. F. Leont'ev},
     title = {On~an estimate for {a~Dirichlet} polynomial and some of its applications},
     journal = {Sbornik. Mathematics},
     pages = {575--586},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a5/}
}
                      
                      
                    A. F. Leont'ev. On~an estimate for a~Dirichlet polynomial and some of its applications. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 575-586. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a5/
