Integrability of trigonometric series. The estimation of the integral modulus of continuity
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 557-573
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $a_m$ tend to zero and let the quantities
\begin{align*}
B_n=\sum_{m=1}^n\biggl(\frac mn\biggr)^k|\Delta a_m|+\sum_{m=n+1}^\infty|\Delta a_m|+
\\
\qquad+\sum_{m=2}^n\biggl(\frac mn\biggr)^k\biggl|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i\biggr|+\sum_{m=n+1}^\infty\biggl|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i\biggr|.
\end{align*}
be finite. We put $f(x)=\frac{a_0}2+\sum_{m=1}^\infty a_m\cos mx$ and
$g(x)=\sum_{m=1}^\infty a_m\sin mx$.
It is shown that the integral modulus of continuity of $k$th order for the function $f$ satisfies the estimate $\omega_k\bigl(f,\frac1n\bigr)_L=O(B_n)$, and that if the series $\sum\frac{|a_m|}m$, converges then
$$
\omega_k\biggl(g,\frac1n\biggr)_L=\frac{2^k}\pi\sum_{m=n}^\infty\frac{|a_m|}m+O(B_n).
$$ Bibliography: 10 titles.
@article{SM_1973_20_4_a4,
author = {S. A. Telyakovskii},
title = {Integrability of trigonometric series. {The} estimation of the integral modulus of continuity},
journal = {Sbornik. Mathematics},
pages = {557--573},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a4/}
}
TY - JOUR AU - S. A. Telyakovskii TI - Integrability of trigonometric series. The estimation of the integral modulus of continuity JO - Sbornik. Mathematics PY - 1973 SP - 557 EP - 573 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1973_20_4_a4/ LA - en ID - SM_1973_20_4_a4 ER -
S. A. Telyakovskii. Integrability of trigonometric series. The estimation of the integral modulus of continuity. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 557-573. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a4/