Integrability of trigonometric series. The estimation of the integral modulus of continuity
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 557-573

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a_m$ tend to zero and let the quantities \begin{align*} B_n=\sum_{m=1}^n\biggl(\frac mn\biggr)^k|\Delta a_m|+\sum_{m=n+1}^\infty|\Delta a_m|+ \\ \qquad+\sum_{m=2}^n\biggl(\frac mn\biggr)^k\biggl|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i\biggr|+\sum_{m=n+1}^\infty\biggl|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i\biggr|. \end{align*} be finite. We put $f(x)=\frac{a_0}2+\sum_{m=1}^\infty a_m\cos mx$ and $g(x)=\sum_{m=1}^\infty a_m\sin mx$. It is shown that the integral modulus of continuity of $k$th order for the function $f$ satisfies the estimate $\omega_k\bigl(f,\frac1n\bigr)_L=O(B_n)$, and that if the series $\sum\frac{|a_m|}m$, converges then $$ \omega_k\biggl(g,\frac1n\biggr)_L=\frac{2^k}\pi\sum_{m=n}^\infty\frac{|a_m|}m+O(B_n). $$ Bibliography: 10 titles.
@article{SM_1973_20_4_a4,
     author = {S. A. Telyakovskii},
     title = {Integrability of trigonometric series. {The} estimation of the integral modulus of continuity},
     journal = {Sbornik. Mathematics},
     pages = {557--573},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a4/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Integrability of trigonometric series. The estimation of the integral modulus of continuity
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 557
EP  - 573
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_4_a4/
LA  - en
ID  - SM_1973_20_4_a4
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Integrability of trigonometric series. The estimation of the integral modulus of continuity
%J Sbornik. Mathematics
%D 1973
%P 557-573
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_4_a4/
%G en
%F SM_1973_20_4_a4
S. A. Telyakovskii. Integrability of trigonometric series. The estimation of the integral modulus of continuity. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 557-573. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a4/