Open symmetric orbits of reductive groups in symmetric $R$-spaces
Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 406-418

Voir la notice de l'article provenant de la source Math-Net.Ru

One considers symmetric spaces which are simultaneously $R$-spaces, i.e. factor spaces of semisimple Lie groups by parabolic subgroups. By a symmetric domain is meant a domain, each point of which is an isolated fixed point of an involutive transformation of the domain. In the work one finds an explicit list of all reductive groups in symmetric $R$-spaces which have open symmetric orbits. For spaces which are connected by means of the Kantor–Koecher construction with semisimple Jordan algebras, the problem is solved by means of the reduction obtained by A. A. Rivilis and some general propositions supplementing his results. Moreover, one applies other methods based on the theory of representations and using the theorem on decompositions of semisimple Lie groups. Bibliography: 10 titles.
@article{SM_1973_20_3_a5,
     author = {B. O. Makarevich},
     title = {Open symmetric orbits of reductive groups in symmetric $R$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {406--418},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_3_a5/}
}
TY  - JOUR
AU  - B. O. Makarevich
TI  - Open symmetric orbits of reductive groups in symmetric $R$-spaces
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 406
EP  - 418
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_3_a5/
LA  - en
ID  - SM_1973_20_3_a5
ER  - 
%0 Journal Article
%A B. O. Makarevich
%T Open symmetric orbits of reductive groups in symmetric $R$-spaces
%J Sbornik. Mathematics
%D 1973
%P 406-418
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_3_a5/
%G en
%F SM_1973_20_3_a5
B. O. Makarevich. Open symmetric orbits of reductive groups in symmetric $R$-spaces. Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 406-418. http://geodesic.mathdoc.fr/item/SM_1973_20_3_a5/