On~a~class of globally hypoelliptic operators
Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 383-405
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an operator $A$ which is defined on an $(n+1)$-dimensional manifold $\Omega$ and which is elliptic everywhere outside an $n$-dimensional submanifold $\Gamma$. If $(x)$ represents the local coordinates in $\Gamma$ and $t$ is the distance to $\Gamma$, then in the coordinates $(x,t)$ the operator $A$ is of the form
$$
Au=\sum_{|\beta|+l\leqslant m}a_{\beta l}(x,t)t^{lq}D^\beta_xD^l_tu,
$$
where $q>1$ is an integer. We present a necessary and sufficient condition for infinite differentiability in a neighborhood of $\Gamma$ of the solution of $Au=f$ if $f$ is infinitely differentiable in a neighborhood of $\Gamma$.
Bibliography: 16 titles.
@article{SM_1973_20_3_a4,
author = {A. V. Fursikov},
title = {On~a~class of globally hypoelliptic operators},
journal = {Sbornik. Mathematics},
pages = {383--405},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/}
}
A. V. Fursikov. On~a~class of globally hypoelliptic operators. Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 383-405. http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/