On a class of globally hypoelliptic operators
Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 383-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an operator $A$ which is defined on an $(n+1)$-dimensional manifold $\Omega$ and which is elliptic everywhere outside an $n$-dimensional submanifold $\Gamma$. If $(x)$ represents the local coordinates in $\Gamma$ and $t$ is the distance to $\Gamma$, then in the coordinates $(x,t)$ the operator $A$ is of the form $$ Au=\sum_{|\beta|+l\leqslant m}a_{\beta l}(x,t)t^{lq}D^\beta_xD^l_tu, $$ where $q>1$ is an integer. We present a necessary and sufficient condition for infinite differentiability in a neighborhood of $\Gamma$ of the solution of $Au=f$ if $f$ is infinitely differentiable in a neighborhood of $\Gamma$. Bibliography: 16 titles.
@article{SM_1973_20_3_a4,
     author = {A. V. Fursikov},
     title = {On~a~class of globally hypoelliptic operators},
     journal = {Sbornik. Mathematics},
     pages = {383--405},
     year = {1973},
     volume = {20},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - On a class of globally hypoelliptic operators
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 383
EP  - 405
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/
LA  - en
ID  - SM_1973_20_3_a4
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T On a class of globally hypoelliptic operators
%J Sbornik. Mathematics
%D 1973
%P 383-405
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/
%G en
%F SM_1973_20_3_a4
A. V. Fursikov. On a class of globally hypoelliptic operators. Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 383-405. http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/

[1] L. Khërmander, “Gipoellipticheskie differentsialnye operatory”, Matematika, 7:1 (1963), 66–78

[2] L. Khërmander, “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, izd-vo «Mir», Moskva, 1967, 297–376 | MR

[3] V. V. Grushin, “Ob odnom klasse gipoellipticheskikh operatorov”, Matem. sb., 83 (125) (1970), 456–473 | Zbl

[4] O. A. Oleinik, E. V. Radkevich, “O lokalnoi gladkosti obobschennykh reshenii i gipoelliptichnosti differentsialnykh uravnenii vtorogo poryadka”, Uspekhi matem. nauk, XXVI:2 (158) (1971), 265–281 | MR

[5] O. A. Oleinik, E. V. Radkevich, “Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Itogi nauki. Matem. analiz. 1969, 8, VINITI, Moskva, 1971, 7–252 | MR | Zbl

[6] V. V. Grushin, “Ob odnom klasse ellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na podmnogoobrazii”, Matem. sb., 84 (126) (1971), 163–195 | Zbl

[7] A. V. Fursikov, “O globalnoi gladkosti reshenii odnogo klassa vyrozhdayuschikhsya ellipticheskikh uravnenii”, Uspekhi matem. nauk, XXVI:5 (161) (1971), 227–228 | MR

[8] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, XIX:3 (117) (1964), 53–161

[9] M. I. Vishik, G. I. Eskin, “Uravneniya v svertkakh v ogranichennoi oblasti”, Uspekhi matem. nauk, XX:3 (123) (1965), 89–152

[10] Dzh. Dzh. Kon, L. Nirenberg, “Algebra psevdodifferentsialnykh operatorov”, Psevdodifferentsialnye operatory, izd-vo «Mir», Moskva, 1967, 9–62 | MR

[11] V. V. Grushin, “Psevdodifferentsialnye operatory v $R^n$ s ogranichennymi simvolami”, Funkts. analiz, 4:3 (1970), 37–50 | MR | Zbl

[12] M. A. Shubin, “Psevdodifferentsialnye operatory v $R^n$”, DAN SSSR, 196:2 (1971), 316–319 | Zbl

[13] G. E. Shilov, Matematicheskii analiz, vtoroi spetsialnyi kurs, izd-vo «Nauka», Moskva, 1965 | MR

[14] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, izd-vo «Nauka», Moskva, 1965

[15] P. M. Blekher, “Ob operatorakh, zavisyaschikh meromorfno ot parametra”, Vestnik MGU, seriya matem., 1969, no. 5, 30–36 | Zbl

[16] V. V. Grushin, “Gipoellipticheskie differentsialnye uravneniya i psevdodifferentsialnye operatory s operatornoznachnymi simvolami”, Matem. sb., 88 (130) (1972), 504–521 | Zbl