On~a~class of globally hypoelliptic operators
Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 383-405

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an operator $A$ which is defined on an $(n+1)$-dimensional manifold $\Omega$ and which is elliptic everywhere outside an $n$-dimensional submanifold $\Gamma$. If $(x)$ represents the local coordinates in $\Gamma$ and $t$ is the distance to $\Gamma$, then in the coordinates $(x,t)$ the operator $A$ is of the form $$ Au=\sum_{|\beta|+l\leqslant m}a_{\beta l}(x,t)t^{lq}D^\beta_xD^l_tu, $$ where $q>1$ is an integer. We present a necessary and sufficient condition for infinite differentiability in a neighborhood of $\Gamma$ of the solution of $Au=f$ if $f$ is infinitely differentiable in a neighborhood of $\Gamma$. Bibliography: 16 titles.
@article{SM_1973_20_3_a4,
     author = {A. V. Fursikov},
     title = {On~a~class of globally hypoelliptic operators},
     journal = {Sbornik. Mathematics},
     pages = {383--405},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - On~a~class of globally hypoelliptic operators
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 383
EP  - 405
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/
LA  - en
ID  - SM_1973_20_3_a4
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T On~a~class of globally hypoelliptic operators
%J Sbornik. Mathematics
%D 1973
%P 383-405
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/
%G en
%F SM_1973_20_3_a4
A. V. Fursikov. On~a~class of globally hypoelliptic operators. Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 383-405. http://geodesic.mathdoc.fr/item/SM_1973_20_3_a4/