Finite principal ideal rings
Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 364-382

Voir la notice de l'article provenant de la source Math-Net.Ru

Every such ring is a direct sum of matrix rings over finite completely primary principal ideal rings. These latter rings are called Galois–Eisenstein–Ore rings or GEO-rings. A number of defining properties for GEO-rings are given, from which it follows that a finite ring with identity in which every two-sided ideal is left principal is a principal ideal ring. A theorem on the existence of a distinguished basis in a fintie bimodule over a Galois ring is proved, generalizing a similar theorem of Raghavendran. Finally, a GEO-ring is described as the quotient ring of an Ore polynomial ring over a Galois ring by an ideal of a special form, generated by Eisenstein polynomials. Bibliography: 10 titles.
@article{SM_1973_20_3_a3,
     author = {A. A. Nechaev},
     title = {Finite principal ideal rings},
     journal = {Sbornik. Mathematics},
     pages = {364--382},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_3_a3/}
}
TY  - JOUR
AU  - A. A. Nechaev
TI  - Finite principal ideal rings
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 364
EP  - 382
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_3_a3/
LA  - en
ID  - SM_1973_20_3_a3
ER  - 
%0 Journal Article
%A A. A. Nechaev
%T Finite principal ideal rings
%J Sbornik. Mathematics
%D 1973
%P 364-382
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_3_a3/
%G en
%F SM_1973_20_3_a3
A. A. Nechaev. Finite principal ideal rings. Sbornik. Mathematics, Tome 20 (1973) no. 3, pp. 364-382. http://geodesic.mathdoc.fr/item/SM_1973_20_3_a3/