@article{SM_1973_20_2_a6,
author = {A. V. Chernavskii},
title = {Coincidence of local flatness and local simple-connectedness for embeddings of $(n-1)$-dimensional manifolds in $n$-dimensional manifolds when~$n>4$},
journal = {Sbornik. Mathematics},
pages = {297--304},
year = {1973},
volume = {20},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a6/}
}
TY - JOUR AU - A. V. Chernavskii TI - Coincidence of local flatness and local simple-connectedness for embeddings of $(n-1)$-dimensional manifolds in $n$-dimensional manifolds when $n>4$ JO - Sbornik. Mathematics PY - 1973 SP - 297 EP - 304 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1973_20_2_a6/ LA - en ID - SM_1973_20_2_a6 ER -
%0 Journal Article %A A. V. Chernavskii %T Coincidence of local flatness and local simple-connectedness for embeddings of $(n-1)$-dimensional manifolds in $n$-dimensional manifolds when $n>4$ %J Sbornik. Mathematics %D 1973 %P 297-304 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/SM_1973_20_2_a6/ %G en %F SM_1973_20_2_a6
A. V. Chernavskii. Coincidence of local flatness and local simple-connectedness for embeddings of $(n-1)$-dimensional manifolds in $n$-dimensional manifolds when $n>4$. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 297-304. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a6/
[1] M. Brown, “Locally flat imbeddings of topological manifolds”, Ann. Math., 75:2 (1962), 331–342 | DOI | MR
[2] S. Eilenberg, R. L. Wilder, “Uniform local connectedness and contractibility”, Amer. J. Math., 64:4 (1942), 613–622 | DOI | MR | Zbl
[3] O. G. Harrold, “Euclidean domains with uniformly abelian locally fundamental groups”, Trans. Amer. Math. Soc., 67:1 (1949), 120–129 | DOI | MR | Zbl
[4] R. H. Bing, “A surface is tame if its complement is I-ULC”, Trans. Amer. Math. Soc., 101:2 (1961), 294–305 | DOI | MR | Zbl
[5] R. H. Bing, “Tame Cantor sets in $E^3$”, Pacific J. Math., 11:2 (1961), 435–446 | MR | Zbl
[6] T. Homma, “On tame imbedding of 0-dimensional compact sets in $E^3$”, Yokahama Math. J., 7:2 (1959), 191–195 | MR | Zbl
[7] J. R. Stallings, “The piecewise linear structure of euclidean space”, Proc. Cambr. Phil. Soc., 58:3 (1962), 481–488 | DOI | MR | Zbl
[8] J. P. Hempel, D. R. McMillan, “Locally nice embeddings of manifolds”, Amer. J. Math., 88:1 (1966), 1–19 | DOI | MR | Zbl
[9] D. R. McMillan, “Taming Cantor sets in $E^n$”, Bull. Amer. Math. Soc., 70:5 (1964), 706–708 | DOI | MR | Zbl
[10] J. L. Bryant, C. L. Seebeck, “Locally nice embeddings of polyhedra”, Quart. J. Math., 19:75 (1968), 257–284 | DOI | MR
[11] A. V. Chernavskii, “Topologicheskie vlozheniya mnogoobrazii”, DAN SSSR, 187:6 (1969), 1247–1250
[12] M. A. Shtanko, “Vlozhenie kompaktov v evklidovo prostranstvo”, DAN SSSR, 198:4 (1971), 783–786
[13] M. A. Shtanko, “Approksimatsiya vlozhenii kompaktov v korazmernosti bolshe dvukh”, DAN SSSR, 198:4 (1971), 783–786
[14] L. Siebenmann, “Approximating cellular mappings by homeomorphisms”, Topology, 11:3 (1972), 271–294 | DOI | MR | Zbl
[15] M. Brown, “A proof of the generalized Schoenflies theorem”, Bull. Amer. Math. Soc., 66:2 (1960), 74–76 | DOI | MR | Zbl
[16] D. R. McMillan, “A criterion for cellularity in a manifold”, Ann. Math., 79:2 (1964), 327–337 | DOI | MR | Zbl
[17] V. P. Kompaniets, “Gomotopicheskii kriterii tochechnogo otobrazheniya”, Ukr. matem. zh., 18:4 (1966), 3–10 | MR | Zbl
[18] Van Ny Kyong, “Psevdoizotopiya trekhmernoi sfery $S^3$”, DAN SSSR, 199:5 (1971), 1002–1003 | Zbl
[19] St. Armentrout, “Cellular decomposition of 3-manifolds that yield 3-manifolds”, Mem. Amer. Math. Soc., 107 (1971), 1–72 | MR
[20] R. Kirby, “Stable homeomorphisms and the annulus conjecture”, Ann. Math., 80 (1969), 575–582 | DOI | MR
[21] C. L. Seebeck, “Collaring an $(n-1)$-manifold in an $n$-manifolds”, Trans. Amer. Math. Soc., 148:1 (1970), 63–68 | DOI | MR | Zbl
[22] R. T. Miller, “Approximating codimension 3 embeddings”, Ann. Math., 95:3 (1972), 406–416 | DOI | MR | Zbl
[23] R. H. Bing, “Radial engulfing”, Conf. on the topol. of manif., ed. P. Hocking, 1968, 1–19 | MR
[24] R. J. Daverman, “Locally nice codimension one manifolds are locally flat, ab. 72-T-G 172”, Notices Amer. Math. Soc., 19:6 (1972), A–724 | MR
[25] A. Černavskii, “Espace de plongements”, Actes du Congrès Int. des Math. 1970, t. 2, 1971, 65–67 | MR
[26] L. C. Siebenmann, “Topological manifolds”, Actes du Congrès Int. des Math. 1970, t. 2, 1971, 133–163 | MR | Zbl