Universality of nonabelian cohomology
Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 283-296

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be the Grothendieck topology and $\mathfrak A$ a sheaf of nonabelian groups on it. We can define the one-dimensional cohomology of $\mathfrak A$ either as the Čech cohomology or as the set of $\mathfrak A$-sheaves locally isomorphic to $\mathfrak A$. In this note we put forward a construction which gives rise to a sequence of cohomological functors on the category of sheaves of nonabelian groups, which in favorable cases are shown to be universal and at the same time to coincide. Bibliography: 13 titles.
@article{SM_1973_20_2_a5,
     author = {A. K. Tolpygo},
     title = {Universality of nonabelian cohomology},
     journal = {Sbornik. Mathematics},
     pages = {283--296},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a5/}
}
TY  - JOUR
AU  - A. K. Tolpygo
TI  - Universality of nonabelian cohomology
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 283
EP  - 296
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_2_a5/
LA  - en
ID  - SM_1973_20_2_a5
ER  - 
%0 Journal Article
%A A. K. Tolpygo
%T Universality of nonabelian cohomology
%J Sbornik. Mathematics
%D 1973
%P 283-296
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_2_a5/
%G en
%F SM_1973_20_2_a5
A. K. Tolpygo. Universality of nonabelian cohomology. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 283-296. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a5/