Universality of nonabelian cohomology
Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 283-296
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be the Grothendieck topology and $\mathfrak A$ a sheaf of nonabelian groups on it. We can define the one-dimensional cohomology of $\mathfrak A$ either as the Čech cohomology or as the set of $\mathfrak A$-sheaves locally isomorphic to $\mathfrak A$. In this note we put forward a construction which gives rise to a sequence of cohomological functors on the category of sheaves of nonabelian groups, which in favorable cases are shown to be universal and at the same time to coincide.
Bibliography: 13 titles.
@article{SM_1973_20_2_a5,
author = {A. K. Tolpygo},
title = {Universality of nonabelian cohomology},
journal = {Sbornik. Mathematics},
pages = {283--296},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a5/}
}
A. K. Tolpygo. Universality of nonabelian cohomology. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 283-296. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a5/