Lattices in solvable Lie groups and deformations of homogeneous spaces
Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 249-266

Voir la notice de l'article provenant de la source Math-Net.Ru

The space $\mathrm{SD}_n$ of pairs $(S,\Gamma)$ is studied, where $S$ is a solvable simply-connected Lie group and $\Gamma$ is a lattice in $S$, considered up to isomorphism. The structure of a neighborhood of a point $(S,\Gamma)\in\mathrm{SD}_n$ is described for two classes of groups $S$. In this connection deformations of homogeneous spaces are studied. Homogeneous spaces of type $K(\pi,1)$ are studied in the Appendix. Bibliography: 14 titles.
@article{SM_1973_20_2_a3,
     author = {V. V. Gorbatsevich},
     title = {Lattices in solvable {Lie} groups and deformations of homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {249--266},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a3/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Lattices in solvable Lie groups and deformations of homogeneous spaces
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 249
EP  - 266
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_2_a3/
LA  - en
ID  - SM_1973_20_2_a3
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Lattices in solvable Lie groups and deformations of homogeneous spaces
%J Sbornik. Mathematics
%D 1973
%P 249-266
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_2_a3/
%G en
%F SM_1973_20_2_a3
V. V. Gorbatsevich. Lattices in solvable Lie groups and deformations of homogeneous spaces. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 249-266. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a3/