Projective connections in canonical bundles of manifolds of planes
Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 223-248

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a submanifold $B$ of the Grassmann manifold $\Omega(m,n)$ of $m$-dimensional planes in $n$-dimensional projective space $P_n$, there is defined a fiber bundle with base space $B$ and with the planes of $B$ as fibers. The projective connections in this fiber bundle are studied. The cases condidered are when either 1) $B=\Omega(m,n)$, or 2) $m=n-1$, or 3) $m=1$ and $\operatorname{codim}B=1$. It is proved that in these cases the fiber bundle admits only a perspective projective connection, apart from the following two possibilities: a) $m=n-1$ and $\dim B=1$; b) $m=1$ and $B$ consists of the tangent lines to a hypersurface of maximum rank. Under assumptions a) and b) there exist nonperspective connections, and a complete geometric description is given of them. Bibliography: 13 titles.
@article{SM_1973_20_2_a2,
     author = {\"U. G. Lumiste},
     title = {Projective connections in canonical bundles of manifolds of planes},
     journal = {Sbornik. Mathematics},
     pages = {223--248},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a2/}
}
TY  - JOUR
AU  - Ü. G. Lumiste
TI  - Projective connections in canonical bundles of manifolds of planes
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 223
EP  - 248
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_2_a2/
LA  - en
ID  - SM_1973_20_2_a2
ER  - 
%0 Journal Article
%A Ü. G. Lumiste
%T Projective connections in canonical bundles of manifolds of planes
%J Sbornik. Mathematics
%D 1973
%P 223-248
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_2_a2/
%G en
%F SM_1973_20_2_a2
Ü. G. Lumiste. Projective connections in canonical bundles of manifolds of planes. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 223-248. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a2/