Projective connections in canonical bundles of manifolds of planes
Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 223-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a submanifold $B$ of the Grassmann manifold $\Omega(m,n)$ of $m$-dimensional planes in $n$-dimensional projective space $P_n$, there is defined a fiber bundle with base space $B$ and with the planes of $B$ as fibers. The projective connections in this fiber bundle are studied. The cases condidered are when either 1) $B=\Omega(m,n)$, or 2) $m=n-1$, or 3) $m=1$ and $\operatorname{codim}B=1$. It is proved that in these cases the fiber bundle admits only a perspective projective connection, apart from the following two possibilities: a) $m=n-1$ and $\dim B=1$; b) $m=1$ and $B$ consists of the tangent lines to a hypersurface of maximum rank. Under assumptions a) and b) there exist nonperspective connections, and a complete geometric description is given of them. Bibliography: 13 titles.
@article{SM_1973_20_2_a2,
     author = {\"U. G. Lumiste},
     title = {Projective connections in canonical bundles of manifolds of planes},
     journal = {Sbornik. Mathematics},
     pages = {223--248},
     year = {1973},
     volume = {20},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a2/}
}
TY  - JOUR
AU  - Ü. G. Lumiste
TI  - Projective connections in canonical bundles of manifolds of planes
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 223
EP  - 248
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_2_a2/
LA  - en
ID  - SM_1973_20_2_a2
ER  - 
%0 Journal Article
%A Ü. G. Lumiste
%T Projective connections in canonical bundles of manifolds of planes
%J Sbornik. Mathematics
%D 1973
%P 223-248
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1973_20_2_a2/
%G en
%F SM_1973_20_2_a2
Ü. G. Lumiste. Projective connections in canonical bundles of manifolds of planes. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 223-248. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a2/

[1] E. Bortolotti, “Connessioni nelle varietà luogo di spazi; applicatione alla geometria metrica differenziale delle congruenze di rette”, Rend. Semin. Fac. Sci. Univ. Cagliari, 3 (1933), 81–89 | Zbl

[2] F. Speranza, “Determinazione di connessioni prospettive”, Boll. Unione mat. ital., 18:2 (1963), 101–107 | MR | Zbl

[3] F. Speranza, “Sulle connessioni prospettive”, Atti Accad. sci. Ist. Bologna, Cl. sci fis. Rend., 10:2 (1963), 91–122 | MR | Zbl

[4] F. Speranza, “Connessioni prospettive in un sistema di spazi lineari”, Period. mat., 46:1–2 (1968), 326–339 | MR | Zbl

[5] E. Cartan, “Les espaces à connexion projective”, Trudy seminara po vekt. i tenz. analizu, 4 (1937), 147–159 | Zbl

[6] S.-S. Chern, “Sur la possibilité de plonger un espace à connexion projective donné dans un espace projectif”, Bull. Sci. math., 61 (1937), 234–243 | Zbl

[7] Yu. G. Lumiste, “Indutsirovannye svyaznosti v pogruzhennykh proektivnykh i affinnykh rassloeniyakh”, Uchenye zapiski Tartusk. un-ta, 177 (1965), 6–42 | MR | Zbl

[8] Yu. G. Lumiste, “Obschie proektivnye osnascheniya kongruentsii pryamykh”, Litovskii matem. sb., 9:1 (1969), 101–107 | MR | Zbl

[9] Yu. G. Lumiste, “Odnorodnye rassloeniya so svyaznostyu i ikh pogruzheniya”, Trudy geometr. seminara, 1, in-t nauchn. inform. AN SSSR, 1966, 191–237 | MR

[10] Yu. G. Lumiste, “Teoriya svyaznostei v rassloennykh prostranstvakh”, Itogi nauki. Algebra. Topologiya. Geometriya. 1969, in-t nauchn. inform. AN SSSR, Moskva, 1971, 123–167 | MR

[11] Yu. G. Lumiste, “Svyaznosti v odnorodnykh rassloeniyakh”, Matem. sb., 69 (111) (1966), 434–469 | MR | Zbl

[12] G. F. Laptev, “Strukturnye uravneniya glavnogo rassloennogo mnogoobraziya”, Trudy geometr. seminara, 2, in-t nauchn. inform. AN SSSR, 1969, 161–178 | MR

[13] R. M. Geidelman, “Differentsialnaya geometriya semeistv podprostranstv v mnogomernykh odnorodnykh prostranstvakh”, Itogi nauki. Algebra. Topologiya. Geometriya. 1965, in-t nauchn. inform. AN SSSR, Moskva, 1967, 323–374 | MR