, $\alpha=0$ we construct an analogous example for multiple Fourier series expansions. Bibliography: 26 titles.
@article{SM_1973_20_2_a0,
author = {K. I. Babenko},
title = {On~summability and convergence of eigenfunction expansions of a~diffe\-rential operator},
journal = {Sbornik. Mathematics},
pages = {157--211},
year = {1973},
volume = {20},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a0/}
}
K. I. Babenko. On summability and convergence of eigenfunction expansions of a differential operator. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 157-211. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a0/
[1] C. Fefferman, “The multiplier problem for the ball”, Ann. Math., 94:2 (1971), 330–336 | DOI | MR | Zbl
[2] T. Ganelius, “Un théorème tauberian pour le transformation de Laplace”, C. r., 242:6 (1956), 719–721 | MR | Zbl
[3] G. Freid, “Restgleid eines Tauberscher Satze, I”, Acta Math. Acad. scient. Hungar, 2:3–4 (1951), 299–308 | DOI | MR
[4] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, DAN SSSR, 87:1 (1951), 11–14
[5] M. V. Keldysh, “Ob odnoi tauberovoi teoreme”, Trudy Matem. in-ta im. V. A. Steklova, XXXVIII (1951), 77–86
[6] S. N. Bernshtein, Ekstremalnye svoistva mnogochlenov, ONTI, Leningrad–Moskva, 1937
[7] B. I. Korenblyum, “Obschaya tauberova teorema dlya otnosheniya funktsii”, DAN SSSR, 88:5 (1953), 745–748 | MR
[8] L. Gårding, “Eigenfunction expansions connected with elliptic differential operators”, C. r., 12éme Congr. des Math. Scand., Lund, 1953, 44–55 | MR
[9] L. Gårding, “On the asymptotic properties of the spectral function belonging to selfadjoint semi-bounded extension of an elliptic differential operator”, Kungl. Fys. Sällkapets i Lund Förh., 24:21 (1954)
[10] L. Khërmander, “O srednikh Rissa spektralnykh funktsii ellipticheskikh differentsialnykh operatorov i sootvetstvuyuschikh spektralnykh razlozhenii”, Matematika, 12:5 (1968), 91–130
[11] Sh. Alimov, “O summiruemosti v $L^p$ ryadov po sobstvennym funktsiyam”, Diff. uravneniya, 6:1 (1970), 164–171 | MR
[12] Sh. Alimov, “O summiruemosti ryadov Fure funktsii iz $L^p$ po sobstvennym funktsiyam”, Diff. uravneniya, 6:3 (1970), 567–576
[13] B. Randol, “On the asymptotic behavier of the Fourier transform of the indicator fonction of the convex set”, Trans. Amer. Math. Soc., 139 (1969), 279–285 | DOI | MR | Zbl
[14] G. Bergendal, Convergens and summability of eigenfunctions expansions connected with elliptic differential operators, Thesis, Lund, 1959 | Zbl
[15] M. V. Fedoryuk, “Metod statsionarnoi fazy dlya mnogomernykh integralov”, Zh. vych. matem. i matem. fiziki, 2:1 (1962), 145–160
[16] C. Fefferman, “Inequalites for strongly singular convolution operators”, Acta math., 124 (1970), 9–36 | DOI | MR | Zbl
[17] S. Saks, Teoriya integrala, IL, Moskva, 1949
[18] L. Khërmander, K teorii obschikh differentsialnykh operatorov v chastnykh proizvodnykh, IL, Moskva, 1959
[19] K. I. Babenko, O skhodimosti v srednem kratnykh ryadov Fure i asimptotike yadra Dirikhle sfericheskikh srednikh, Preprint No 52, in-t Prikladnoi matematiki AN SSSR, 1971
[20] E. M. Nikishin, Rezonansnye teoremy i funktsionalnye ryady, Avtoreferat doktorskoi dissertatsii, MGU, 1971
[21] E. Stein, “On limits of sequences operators”, Ann. Math., 74 (1961), 140–170 | DOI | MR | Zbl
[22] V. A. Ilin, “Ryady Fure po sobstvennym funktsiyam mnogomernykh oblastei, raskhodyaschiesya pochti vsyudu”, DAN SSSR, 170:2 (1966), 257–260
[23] A. Zigmund, Trigonometricheskie ryady, t. 2, izd-vo «Mir», Moskva, 1965 | MR
[24] H. Buseman, W. Feller, “Differentiation der $L$-Integrale”, Fundam. Math., 22 (1934), 226–256 | Zbl
[25] B. S. Mityagin, “O multiplikatorakh-idempotentakh v simmetricheskikh funktsionalnykh prostranstvakh”, Funkts. analiz, 6:3 (1972), 81–82 | MR | Zbl
[26] T. Ganelins, “Tauberian theorems for the Stieltjes transform”, Math. Scandi., 14:2 (1964), 213–219 | MR