On~summability and convergence of eigenfunction expansions of a~diffe\-rential operator
Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 157-211
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $a$ be a positive elliptic operator with constant coefficients, and let $\Omega$ be a region in $R^l$. We consider the operator $a$ on $C^\infty_0(\Omega)$, and we let $\hat a$ be an extension of this operator with a positive lower bound. Let $\{E_\lambda\}$ denote the spectral family of the operator $\hat a$. The operator $E_\lambda$ or its Riesz mean $E^a_\lambda$ will be considered on functions $f\in L^p(\Omega)$, $1\leqslant p\infty$, such that $\operatorname{supp}f\subseteq\Omega_0$, where $\Omega_0$ is a region with compact closure in $\Omega$. We will study the norm of the operator $ E_\lambda\colon L_p(\Omega_0)\to L_p(\Omega_0)$. We obtain definitive results when the point $(p,\alpha)$ lies in one of the three regions:
\begin{gather*}
\left\{(p,\alpha):1\leqslant p\leqslant\frac{2l}{l+1},0\leqslant\alpha\leqslant\alpha_p=\frac lp-\frac{l+1}2\right\},\\
\left\{(p,\alpha):\frac{2l}{l-1}\leqslant p\leqslant\frac{2l}{l-1},\alpha=0\right\},\\
\left\{(p,\alpha):1\leqslant p\leqslant2,\alpha>(l-1)\biggl(\frac1p-\frac12\biggr)\right\}.
\end{gather*}
For $1\leqslant p\leqslant\frac{2l}{l+1}$, $\alpha=\alpha_p=\frac lp-\frac{l+1}2$
we construct an example of a function for which the Riesz mean of order $\alpha_p$ of its spectral expansion diverges almost everywhere. For $\frac{2l}{l+1}$, $\alpha=0$ we construct an analogous example for multiple Fourier series expansions.
Bibliography: 26 titles.
@article{SM_1973_20_2_a0,
author = {K. I. Babenko},
title = {On~summability and convergence of eigenfunction expansions of a~diffe\-rential operator},
journal = {Sbornik. Mathematics},
pages = {157--211},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a0/}
}
K. I. Babenko. On~summability and convergence of eigenfunction expansions of a~diffe\-rential operator. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 157-211. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a0/