On summability and convergence of eigenfunction expansions of a diffe­rential operator
Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 157-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $a$ be a positive elliptic operator with constant coefficients, and let $\Omega$ be a region in $R^l$. We consider the operator $a$ on $C^\infty_0(\Omega)$, and we let $\hat a$ be an extension of this operator with a positive lower bound. Let $\{E_\lambda\}$ denote the spectral family of the operator $\hat a$. The operator $E_\lambda$ or its Riesz mean $E^a_\lambda$ will be considered on functions $f\in L^p(\Omega)$, $1\leqslant p<\infty$, such that $\operatorname{supp}f\subseteq\Omega_0$, where $\Omega_0$ is a region with compact closure in $\Omega$. We will study the norm of the operator $ E_\lambda\colon L_p(\Omega_0)\to L_p(\Omega_0)$. We obtain definitive results when the point $(p,\alpha)$ lies in one of the three regions: \begin{gather*} \left\{(p,\alpha):1\leqslant p\leqslant\frac{2l}{l+1},0\leqslant\alpha\leqslant\alpha_p=\frac lp-\frac{l+1}2\right\},\\ \left\{(p,\alpha):\frac{2l}{l-1}\leqslant p\leqslant\frac{2l}{l-1},\alpha=0\right\},\\ \left\{(p,\alpha):1\leqslant p\leqslant2,\alpha>(l-1)\biggl(\frac1p-\frac12\biggr)\right\}. \end{gather*} For $1\leqslant p\leqslant\frac{2l}{l+1}$, $\alpha=\alpha_p=\frac lp-\frac{l+1}2$ we construct an example of a function for which the Riesz mean of order $\alpha_p$ of its spectral expansion diverges almost everywhere. For $\frac{2l}{l+1}, $\alpha=0$ we construct an analogous example for multiple Fourier series expansions. Bibliography: 26 titles.
@article{SM_1973_20_2_a0,
     author = {K. I. Babenko},
     title = {On~summability and convergence of eigenfunction expansions of a~diffe\-rential operator},
     journal = {Sbornik. Mathematics},
     pages = {157--211},
     year = {1973},
     volume = {20},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_2_a0/}
}
TY  - JOUR
AU  - K. I. Babenko
TI  - On summability and convergence of eigenfunction expansions of a diffe­rential operator
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 157
EP  - 211
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_2_a0/
LA  - en
ID  - SM_1973_20_2_a0
ER  - 
%0 Journal Article
%A K. I. Babenko
%T On summability and convergence of eigenfunction expansions of a diffe­rential operator
%J Sbornik. Mathematics
%D 1973
%P 157-211
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1973_20_2_a0/
%G en
%F SM_1973_20_2_a0
K. I. Babenko. On summability and convergence of eigenfunction expansions of a diffe­rential operator. Sbornik. Mathematics, Tome 20 (1973) no. 2, pp. 157-211. http://geodesic.mathdoc.fr/item/SM_1973_20_2_a0/

[1] C. Fefferman, “The multiplier problem for the ball”, Ann. Math., 94:2 (1971), 330–336 | DOI | MR | Zbl

[2] T. Ganelius, “Un théorème tauberian pour le transformation de Laplace”, C. r., 242:6 (1956), 719–721 | MR | Zbl

[3] G. Freid, “Restgleid eines Tauberscher Satze, I”, Acta Math. Acad. scient. Hungar, 2:3–4 (1951), 299–308 | DOI | MR

[4] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, DAN SSSR, 87:1 (1951), 11–14

[5] M. V. Keldysh, “Ob odnoi tauberovoi teoreme”, Trudy Matem. in-ta im. V. A. Steklova, XXXVIII (1951), 77–86

[6] S. N. Bernshtein, Ekstremalnye svoistva mnogochlenov, ONTI, Leningrad–Moskva, 1937

[7] B. I. Korenblyum, “Obschaya tauberova teorema dlya otnosheniya funktsii”, DAN SSSR, 88:5 (1953), 745–748 | MR

[8] L. Gårding, “Eigenfunction expansions connected with elliptic differential operators”, C. r., 12éme Congr. des Math. Scand., Lund, 1953, 44–55 | MR

[9] L. Gårding, “On the asymptotic properties of the spectral function belonging to selfadjoint semi-bounded extension of an elliptic differential operator”, Kungl. Fys. Sällkapets i Lund Förh., 24:21 (1954)

[10] L. Khërmander, “O srednikh Rissa spektralnykh funktsii ellipticheskikh differentsialnykh operatorov i sootvetstvuyuschikh spektralnykh razlozhenii”, Matematika, 12:5 (1968), 91–130

[11] Sh. Alimov, “O summiruemosti v $L^p$ ryadov po sobstvennym funktsiyam”, Diff. uravneniya, 6:1 (1970), 164–171 | MR

[12] Sh. Alimov, “O summiruemosti ryadov Fure funktsii iz $L^p$ po sobstvennym funktsiyam”, Diff. uravneniya, 6:3 (1970), 567–576

[13] B. Randol, “On the asymptotic behavier of the Fourier transform of the indicator fonction of the convex set”, Trans. Amer. Math. Soc., 139 (1969), 279–285 | DOI | MR | Zbl

[14] G. Bergendal, Convergens and summability of eigenfunctions expansions connected with elliptic differential operators, Thesis, Lund, 1959 | Zbl

[15] M. V. Fedoryuk, “Metod statsionarnoi fazy dlya mnogomernykh integralov”, Zh. vych. matem. i matem. fiziki, 2:1 (1962), 145–160

[16] C. Fefferman, “Inequalites for strongly singular convolution operators”, Acta math., 124 (1970), 9–36 | DOI | MR | Zbl

[17] S. Saks, Teoriya integrala, IL, Moskva, 1949

[18] L. Khërmander, K teorii obschikh differentsialnykh operatorov v chastnykh proizvodnykh, IL, Moskva, 1959

[19] K. I. Babenko, O skhodimosti v srednem kratnykh ryadov Fure i asimptotike yadra Dirikhle sfericheskikh srednikh, Preprint No 52, in-t Prikladnoi matematiki AN SSSR, 1971

[20] E. M. Nikishin, Rezonansnye teoremy i funktsionalnye ryady, Avtoreferat doktorskoi dissertatsii, MGU, 1971

[21] E. Stein, “On limits of sequences operators”, Ann. Math., 74 (1961), 140–170 | DOI | MR | Zbl

[22] V. A. Ilin, “Ryady Fure po sobstvennym funktsiyam mnogomernykh oblastei, raskhodyaschiesya pochti vsyudu”, DAN SSSR, 170:2 (1966), 257–260

[23] A. Zigmund, Trigonometricheskie ryady, t. 2, izd-vo «Mir», Moskva, 1965 | MR

[24] H. Buseman, W. Feller, “Differentiation der $L$-Integrale”, Fundam. Math., 22 (1934), 226–256 | Zbl

[25] B. S. Mityagin, “O multiplikatorakh-idempotentakh v simmetricheskikh funktsionalnykh prostranstvakh”, Funkts. analiz, 6:3 (1972), 81–82 | MR | Zbl

[26] T. Ganelins, “Tauberian theorems for the Stieltjes transform”, Math. Scandi., 14:2 (1964), 213–219 | MR