An~example of an orthonormal system of convergence in~$C$ but not in~$L^2$
Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 145-153
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following theorem.
Theorem. {\it For any $p_0\in[1,\infty)$ there exists a complete uniformly bounded orthonormal system $\{\varphi_n\}$ having the following properties}:
1) For all $f\in L^p, p>p_0,$ the Fouries series $\sum c_n\varphi_n$ converges to $f$ almost everywhere.
2) {\it There exists an $F\in L^{p_0}$ whose Fourier series diverges almost everywhere.}
Bibliography: 8 titles.
@article{SM_1973_20_1_a7,
author = {A. M. Olevskii},
title = {An~example of an orthonormal system of convergence in~$C$ but not in~$L^2$},
journal = {Sbornik. Mathematics},
pages = {145--153},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_1_a7/}
}
A. M. Olevskii. An~example of an orthonormal system of convergence in~$C$ but not in~$L^2$. Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 145-153. http://geodesic.mathdoc.fr/item/SM_1973_20_1_a7/