On~the structure of invariant measures related to noncommutative random products
Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 95-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G=SL(R,n)$ be the group of mappings of the real projective space $P^{n-1}$ onto itself. There is introduced the notion of a boundary measure $\nu$ on $P^{n-1}$ for a probability measure $\mu$ on $G$, and its relation to the unique invariant measure on $P^{n-1}$ with respect to the operator $\pi(x,A)=\mu\{g\in G:gx\in A\}$ is found. It is established that the Markov chain generated by the transition probability $\pi(x,A)$ and the invariant boundary measure $\nu$ is a factor-automorphism of an automorphism of a certain Bernoulli space. A limit theorem for random mappings of a segment of the line into itself is proved. Bibliography: 6 titles.
@article{SM_1973_20_1_a5,
     author = {E. G. Litinskii},
     title = {On~the structure of invariant measures related to noncommutative random products},
     journal = {Sbornik. Mathematics},
     pages = {95--117},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_1_a5/}
}
TY  - JOUR
AU  - E. G. Litinskii
TI  - On~the structure of invariant measures related to noncommutative random products
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 95
EP  - 117
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_1_a5/
LA  - en
ID  - SM_1973_20_1_a5
ER  - 
%0 Journal Article
%A E. G. Litinskii
%T On~the structure of invariant measures related to noncommutative random products
%J Sbornik. Mathematics
%D 1973
%P 95-117
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_1_a5/
%G en
%F SM_1973_20_1_a5
E. G. Litinskii. On~the structure of invariant measures related to noncommutative random products. Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 95-117. http://geodesic.mathdoc.fr/item/SM_1973_20_1_a5/