On a global property of a matrix-valued function of one variable
Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 53-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove the following assertion. Let $A(x)$ be an $n\times n$ matrix whose elements belong to $C^k[0,b]$, where $k\geqslant0$ and $0. Furthermore, let $\{\sigma_j(x)\}_1^m$ ($m\leqslant n$) be the distinct eigenvalues of $A(x)$ belonging to $C^k[0,b]$. Then, if $A(x)$ for all $x\in[0,b]$ is similar to a Jordan matrix $J(x)$, in which to each eigenvalue $\sigma_j(x)$ there corresponds a constant number of Jordan blocks whose dimension is also independent of $x\in[0,b]$, it follows that $A(x)$ is smoothly similar to $J(x)$ on $[0,b]$. Bibliography: 6 titles.
@article{SM_1973_20_1_a2,
     author = {B. V. Verbitskii},
     title = {On~a~global property of a~matrix-valued function of one variable},
     journal = {Sbornik. Mathematics},
     pages = {53--65},
     year = {1973},
     volume = {20},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_1_a2/}
}
TY  - JOUR
AU  - B. V. Verbitskii
TI  - On a global property of a matrix-valued function of one variable
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 53
EP  - 65
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_1_a2/
LA  - en
ID  - SM_1973_20_1_a2
ER  - 
%0 Journal Article
%A B. V. Verbitskii
%T On a global property of a matrix-valued function of one variable
%J Sbornik. Mathematics
%D 1973
%P 53-65
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1973_20_1_a2/
%G en
%F SM_1973_20_1_a2
B. V. Verbitskii. On a global property of a matrix-valued function of one variable. Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/SM_1973_20_1_a2/

[1] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, izd-vo «Mir», Moskva, 1968

[2] W. Wasow, “On holomorphically similar matrices”, J. math. analysis, 4:2 (1962), 202–206 | DOI | MR | Zbl

[3] Y. Sibuya, “Some global properties of matrices of function of one variable”, Math. Ann., 161:1 (1965), 67–77 | DOI | MR | Zbl

[4] P.-F. Hsich, J. Sibuya, “A global analysis of matrices of function of several variables”, J. math. analysis, 14:2 (1966), 332–340 | DOI | MR

[5] S. Khabbaz, G. Stengle, “An application $K$-theory to the global analysis of matrix valued function”, Math. Ann., 179:2 (1969), 115–122 | DOI | MR | Zbl

[6] R. Narasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, izd-vo «Mir», Moskva, 1971