On~a~global property of a~matrix-valued function of one variable
Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 53-65

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the following assertion. Let $A(x)$ be an $n\times n$ matrix whose elements belong to $C^k[0,b]$, where $k\geqslant0$ and $0$. Furthermore, let $\{\sigma_j(x)\}_1^m$ ($m\leqslant n$) be the distinct eigenvalues of $A(x)$ belonging to $C^k[0,b]$. Then, if $A(x)$ for all $x\in[0,b]$ is similar to a Jordan matrix $J(x)$, in which to each eigenvalue $\sigma_j(x)$ there corresponds a constant number of Jordan blocks whose dimension is also independent of $x\in[0,b]$, it follows that $A(x)$ is smoothly similar to $J(x)$ on $[0,b]$. Bibliography: 6 titles.
@article{SM_1973_20_1_a2,
     author = {B. V. Verbitskii},
     title = {On~a~global property of a~matrix-valued function of one variable},
     journal = {Sbornik. Mathematics},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_1_a2/}
}
TY  - JOUR
AU  - B. V. Verbitskii
TI  - On~a~global property of a~matrix-valued function of one variable
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 53
EP  - 65
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_1_a2/
LA  - en
ID  - SM_1973_20_1_a2
ER  - 
%0 Journal Article
%A B. V. Verbitskii
%T On~a~global property of a~matrix-valued function of one variable
%J Sbornik. Mathematics
%D 1973
%P 53-65
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_1_a2/
%G en
%F SM_1973_20_1_a2
B. V. Verbitskii. On~a~global property of a~matrix-valued function of one variable. Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/SM_1973_20_1_a2/