On~the number of indecomposable integral $p$-adic representations of crossed group rings
Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 27-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group, $Z_p$ the ring of $p$-adic integers, $Z_p^*$ the multiplicative group of $Z_p$ and $(G,Z_p,\Lambda)$ the crossed product group ring by the factor set $\{\lambda_{a, b}\}$ ($\lambda_{a, b}\in Z_p^*;$ $a,b\in G$). We find all rings $\Lambda=(G,Z_p,\lambda)$ such that the number of indecomposable $Z_p$-representations of $\Lambda$ is finite. We note that in case $\Lambda$ is the group ring $Z_pG$ the analogous problem was solved by Berman, Heller, Reiner and the author.
Bibliography: 22 titles.
@article{SM_1973_20_1_a1,
author = {P. M. Gudivok},
title = {On~the number of indecomposable integral $p$-adic representations of crossed group rings},
journal = {Sbornik. Mathematics},
pages = {27--51},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_1_a1/}
}
P. M. Gudivok. On~the number of indecomposable integral $p$-adic representations of crossed group rings. Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 27-51. http://geodesic.mathdoc.fr/item/SM_1973_20_1_a1/