On~the number of indecomposable integral $p$-adic representations of crossed group rings
Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 27-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, $Z_p$ the ring of $p$-adic integers, $Z_p^*$ the multiplicative group of $Z_p$ and $(G,Z_p,\Lambda)$ the crossed product group ring by the factor set $\{\lambda_{a, b}\}$ ($\lambda_{a, b}\in Z_p^*;$ $a,b\in G$). We find all rings $\Lambda=(G,Z_p,\lambda)$ such that the number of indecomposable $Z_p$-representations of $\Lambda$ is finite. We note that in case $\Lambda$ is the group ring $Z_pG$ the analogous problem was solved by Berman, Heller, Reiner and the author. Bibliography: 22 titles.
@article{SM_1973_20_1_a1,
     author = {P. M. Gudivok},
     title = {On~the number of indecomposable integral $p$-adic representations of crossed group rings},
     journal = {Sbornik. Mathematics},
     pages = {27--51},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_1_a1/}
}
TY  - JOUR
AU  - P. M. Gudivok
TI  - On~the number of indecomposable integral $p$-adic representations of crossed group rings
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 27
EP  - 51
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_1_a1/
LA  - en
ID  - SM_1973_20_1_a1
ER  - 
%0 Journal Article
%A P. M. Gudivok
%T On~the number of indecomposable integral $p$-adic representations of crossed group rings
%J Sbornik. Mathematics
%D 1973
%P 27-51
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_1_a1/
%G en
%F SM_1973_20_1_a1
P. M. Gudivok. On~the number of indecomposable integral $p$-adic representations of crossed group rings. Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 27-51. http://geodesic.mathdoc.fr/item/SM_1973_20_1_a1/