On~stationary solutions of the problem of flow past a~body of a~viscous incompressible fluid
Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 1-25
Voir la notice de l'article provenant de la source Math-Net.Ru
The stationary solutions of the problem of flow past a body with finite Dirichlet integral are considered. It is found that the vector velocity $\mathbf u(\mathbf x)$ differs from its limit value $\mathbf u_\infty$ by a quantity $O(|\mathbf x|^{-1})$. By the same token it is proved that any solution of the flow problem with finite Dirichlet integral possesses a wake outside which the vorticity is exponentially small.
Bibliography: 16 titles.
@article{SM_1973_20_1_a0,
author = {K. I. Babenko},
title = {On~stationary solutions of the problem of flow past a~body of a~viscous incompressible fluid},
journal = {Sbornik. Mathematics},
pages = {1--25},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_1_a0/}
}
K. I. Babenko. On~stationary solutions of the problem of flow past a~body of a~viscous incompressible fluid. Sbornik. Mathematics, Tome 20 (1973) no. 1, pp. 1-25. http://geodesic.mathdoc.fr/item/SM_1973_20_1_a0/