Approximation of compacta in $E^n$ in codimension greater than two
Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 615-626

Voir la notice de l'article provenant de la source Math-Net.Ru

The following is proved. Theorem. For a compactum of codimension greater than or equal to three lying in Euclidean space there exists an arbitrarily close approximation by a locally homotopically unknotted (1-ULC) imbedding. A series of corollaries about approximation of imbeddings of manifolds and polyhedra is derived. A problem about Menger universal compacta is solved. The article contains the complete proof of previously announced results stated in the references. Bibliography: 17 titles.
@article{SM_1973_19_4_a6,
     author = {M. A. Shtan'ko},
     title = {Approximation of compacta in $E^n$ in codimension greater than two},
     journal = {Sbornik. Mathematics},
     pages = {615--626},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_4_a6/}
}
TY  - JOUR
AU  - M. A. Shtan'ko
TI  - Approximation of compacta in $E^n$ in codimension greater than two
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 615
EP  - 626
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_4_a6/
LA  - en
ID  - SM_1973_19_4_a6
ER  - 
%0 Journal Article
%A M. A. Shtan'ko
%T Approximation of compacta in $E^n$ in codimension greater than two
%J Sbornik. Mathematics
%D 1973
%P 615-626
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_4_a6/
%G en
%F SM_1973_19_4_a6
M. A. Shtan'ko. Approximation of compacta in $E^n$ in codimension greater than two. Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 615-626. http://geodesic.mathdoc.fr/item/SM_1973_19_4_a6/