On~the axioms of homology theory
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 597-614
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give an axiomatization for homology and cohomology theory in the categories $\mathscr A$ and $\mathscr B$ of countable locally finite polyhedra and of locally compact metrizable spaces, respectively, with proper mappings; in the category $\mathscr B_0$ of metrizable compacta and continuous mappings; and (for cohomology) in the category $\mathscr B$ of locally compact metrizable spaces and arbitrary continuous mappings. In $\mathscr B$ we determine the kernel of the natural homomorphism $\varphi\colon H^n(X)\to\varprojlim H^n(C)$ over compact $C$ for a $\Pi$-additive cohomology (in particular, for Aleksandrov–Čech cohomology). Finally, we analyze the axioms of Sklyarenko (Math. Sb. (N.S.) 85(127) (1971), 201–223).
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1973_19_4_a5,
     author = {S. V. Petkova},
     title = {On~the axioms of homology theory},
     journal = {Sbornik. Mathematics},
     pages = {597--614},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_4_a5/}
}
                      
                      
                    S. V. Petkova. On~the axioms of homology theory. Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 597-614. http://geodesic.mathdoc.fr/item/SM_1973_19_4_a5/
