On~a~problem of A.\,O.~Gel'fond
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 509-530
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A complete solution is found of the interpolation problem for constructing entire functions
$g(z)$ given their values on a geometric progression
$$
g(\beta^n)=b_n,\qquad n=0,1,2,\dots,
$$
where $\beta$ is a complex number, $|\beta|>1$.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1973_19_4_a1,
     author = {Yu. A. Kaz'min},
     title = {On~a~problem of {A.\,O.~Gel'fond}},
     journal = {Sbornik. Mathematics},
     pages = {509--530},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_4_a1/}
}
                      
                      
                    Yu. A. Kaz'min. On~a~problem of A.\,O.~Gel'fond. Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 509-530. http://geodesic.mathdoc.fr/item/SM_1973_19_4_a1/
