On~a~problem of A.\,O.~Gel'fond
Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 509-530

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete solution is found of the interpolation problem for constructing entire functions $g(z)$ given their values on a geometric progression $$ g(\beta^n)=b_n,\qquad n=0,1,2,\dots, $$ where $\beta$ is a complex number, $|\beta|>1$. Bibliography: 12 titles.
@article{SM_1973_19_4_a1,
     author = {Yu. A. Kaz'min},
     title = {On~a~problem of {A.\,O.~Gel'fond}},
     journal = {Sbornik. Mathematics},
     pages = {509--530},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_4_a1/}
}
TY  - JOUR
AU  - Yu. A. Kaz'min
TI  - On~a~problem of A.\,O.~Gel'fond
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 509
EP  - 530
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_4_a1/
LA  - en
ID  - SM_1973_19_4_a1
ER  - 
%0 Journal Article
%A Yu. A. Kaz'min
%T On~a~problem of A.\,O.~Gel'fond
%J Sbornik. Mathematics
%D 1973
%P 509-530
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_4_a1/
%G en
%F SM_1973_19_4_a1
Yu. A. Kaz'min. On~a~problem of A.\,O.~Gel'fond. Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 509-530. http://geodesic.mathdoc.fr/item/SM_1973_19_4_a1/