Representation of~measurable functions almost everywhere by convergent series
Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 469-508

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that for a certain class of systems $\{\varphi _k\}$ (systems of type $(\mathrm{X})$) one may construct a series \begin{equation} \sum^\infty_{k=1}a_k\varphi_k(t),\qquad t\in[0,1], \end{equation} having the following properties: 1) $\lim_{k\to\infty}a_k\varphi_k(t)=0$ uniformly on the interval $[0,1]$. 2) For any measurable function $f(t)$ on the interval $[0,1]$ and for any number $N$, one can find a partial series $$ \sum^\infty_{k=1}a_{n_k}\varphi_{n_k}(t),\qquad(N\cdots), $$ from (1) which converges to $f(t)$ almost everywhere on the set where $f(t)$ is finite, and converges to $f(t)$ in measure on $[0,1]$. 3) If, in addition, the functions $\varphi_k$ ($k\geqslant1$) and $f$ are piecewise continuous and $\inf_{t\in[0,1]}f(t)>0$, then $$ \sum^\infty_{k=1}a_{n_k}\varphi_{n_k}(t)\qquad\text{for all $t\in[0,1]$ and $m\geqslant1$}. $$ It is shown that systems of type $(\mathrm X)$ include, for example, trigonometric systems, the systems of Haar and Walsh, indexed in their original or a different order, any basis of the space $C(0,1)$, and others. Bibliography: 19 titles.
@article{SM_1973_19_4_a0,
     author = {F. G. Arutyunyan},
     title = {Representation of~measurable functions almost everywhere by convergent series},
     journal = {Sbornik. Mathematics},
     pages = {469--508},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/}
}
TY  - JOUR
AU  - F. G. Arutyunyan
TI  - Representation of~measurable functions almost everywhere by convergent series
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 469
EP  - 508
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/
LA  - en
ID  - SM_1973_19_4_a0
ER  - 
%0 Journal Article
%A F. G. Arutyunyan
%T Representation of~measurable functions almost everywhere by convergent series
%J Sbornik. Mathematics
%D 1973
%P 469-508
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/
%G en
%F SM_1973_19_4_a0
F. G. Arutyunyan. Representation of~measurable functions almost everywhere by convergent series. Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 469-508. http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/