Representation of measurable functions almost everywhere by convergent series
Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 469-508 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is proved that for a certain class of systems $\{\varphi _k\}$ (systems of type $(\mathrm{X})$) one may construct a series \begin{equation} \sum^\infty_{k=1}a_k\varphi_k(t),\qquad t\in[0,1], \end{equation} having the following properties: 1) $\lim_{k\to\infty}a_k\varphi_k(t)=0$ uniformly on the interval $[0,1]$. 2) For any measurable function $f(t)$ on the interval $[0,1]$ and for any number $N$, one can find a partial series $$ \sum^\infty_{k=1}a_{n_k}\varphi_{n_k}(t),\qquad(N<n_1<n_2<\cdots), $$ from (1) which converges to $f(t)$ almost everywhere on the set where $f(t)$ is finite, and converges to $f(t)$ in measure on $[0,1]$. 3) If, in addition, the functions $\varphi_k$ ($k\geqslant1$) and $f$ are piecewise continuous and $\inf_{t\in[0,1]}f(t)>0$, then $$ \sum^\infty_{k=1}a_{n_k}\varphi_{n_k}(t)\qquad\text{for all $t\in[0,1]$ and $m\geqslant1$}. $$ It is shown that systems of type $(\mathrm X)$ include, for example, trigonometric systems, the systems of Haar and Walsh, indexed in their original or a different order, any basis of the space $C(0,1)$, and others. Bibliography: 19 titles.
@article{SM_1973_19_4_a0,
     author = {F. G. Arutyunyan},
     title = {Representation of~measurable functions almost everywhere by convergent series},
     journal = {Sbornik. Mathematics},
     pages = {469--508},
     year = {1973},
     volume = {19},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/}
}
TY  - JOUR
AU  - F. G. Arutyunyan
TI  - Representation of measurable functions almost everywhere by convergent series
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 469
EP  - 508
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/
LA  - en
ID  - SM_1973_19_4_a0
ER  - 
%0 Journal Article
%A F. G. Arutyunyan
%T Representation of measurable functions almost everywhere by convergent series
%J Sbornik. Mathematics
%D 1973
%P 469-508
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/
%G en
%F SM_1973_19_4_a0
F. G. Arutyunyan. Representation of measurable functions almost everywhere by convergent series. Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 469-508. http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/

[1] N. N. Luzin, Sobranie sochinenii, t. I, izd-vo AN SSSR, Moskva, 1963, str. 400 | MR

[2] N. N. Luzin, Integral i trigonometricheskii ryad, Gostekhizdat, Moskva–Leningrad, 1951 | MR

[3] D. E. Menshov, “Sur la représentation des fonctions mesurables par des séries trigonométriques”, Matem. sb., 9 (51) (1941), 667–692 | MR

[4] A. A. Talalyan, “Predstavlenie izmerimykh funktsii ryadami”, Uspekhi matem. nauk, XV:5 (95) (1960), 77–141 | MR

[5] A. A. Talalyan, F. G. Arutyunyan, “O skhodimosti ryadov po sisteme Khaara k $+\infty$”, Matem. sb., 66 (108) (1965), 240–247

[6] A. A. Talalyan, “Predstavlenie proizvolnoi izmerimoi funktsii ryadami po funktsiyam sistemy Shaudera”, Izv. AN ArmSSR, seriya fiz-matem. nauk, 12:3 (1969), 3–14

[7] A. A. Talalyan, “Trigonometricheskie ryady, universalnye otnositelno podryadov”, Izv. AN SSSR, seriya matem., 27 (1963), 621–660 | Zbl

[8] D. E. Menshov, “O skhodimosti po mere trigonometricheskikh ryadov”, Trudy matem. in-ta im. V. A. Steklova, XXXII, 1950, 1–99 | MR | Zbl

[9] R. I. Osipov, “Predstavlenie izmerimykh funktsii ryadami”, Izv. AN ArmSSR, seriya fiz.-matem. nauk, 1965, no. 5, 3–15 | MR | Zbl

[10] F. G. Arutyunyan, “O ryadakh po sisteme Khaara”, DAN ArmSSR, 42:3 (1966), 134–140 | MR | Zbl

[11] R. S. Davtyan, “O predstavlenii izmerimykh funktsii ryadami po polnym ortonormirovannym sistemam skhodimosti”, Izv. AN SSSR, seriya matem., 35 (1971), 3–20

[12] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR

[13] M. B. Petrovskaya, “O nul-ryadakh po sisteme Khaara i mnozhestvakh edinstvennosti”, Izv. AN SSSR, seriya matem., 28 (1964), 773–798

[14] P. L. Ulyanov, “Silno bezuslovno skhodyaschiesya ryady”, Izv. AN SSSR, seriya matem., 24 (1960), 75–92 | MR

[15] R. F. Cundy, “Martingale theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 124:2 (1966), 228–248 | DOI | MR

[16] Y. Katznelson, “Trigonometric series with positive partial sums”, Bull. Amer. Math. Soc., 71:5 (1965), 718–719 | DOI | MR | Zbl

[17] J. L. Walsh, “A closed set of normal ortogonal functions”, Amer. J. Math., 45 (1923), 5–24 | DOI | MR | Zbl

[18] L. G. Pal, F. Schipp, “On Haar and Schauder series”, Acta scient. math. Szeged, 31:1–2 (1970), 53–68 | MR

[19] Mezhdunarodnyi kongress matematikov, sektsiya 4, Tezisy kratkikh nauchnykh soobschenii, Moskva, 1966