Representation of~measurable functions almost everywhere by convergent series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 469-508
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper it is proved that for a certain class of systems $\{\varphi _k\}$ (systems of type $(\mathrm{X})$) one may construct a series
\begin{equation}
\sum^\infty_{k=1}a_k\varphi_k(t),\qquad t\in[0,1],
\end{equation}
having the following properties:
1) $\lim_{k\to\infty}a_k\varphi_k(t)=0$ uniformly on the interval $[0,1]$.
2) For any measurable function $f(t)$ on the interval $[0,1]$ and for any number $N$, one can find a partial series
$$
\sum^\infty_{k=1}a_{n_k}\varphi_{n_k}(t),\qquad(N\cdots),
$$
from (1) which converges to $f(t)$ almost everywhere on the set where $f(t)$ is finite, and converges to $f(t)$ in measure on $[0,1]$.
3) If, in addition, the functions $\varphi_k$ ($k\geqslant1$) and $f$ are piecewise continuous and $\inf_{t\in[0,1]}f(t)>0$, then
$$
\sum^\infty_{k=1}a_{n_k}\varphi_{n_k}(t)\qquad\text{for all $t\in[0,1]$ and $m\geqslant1$}.
$$
It is shown that systems of type $(\mathrm X)$ include, for example, trigonometric systems, the systems of Haar and Walsh, indexed in their original or a different order, any basis of the space $C(0,1)$, and others.
Bibliography: 19 titles.
			
            
            
            
          
        
      @article{SM_1973_19_4_a0,
     author = {F. G. Arutyunyan},
     title = {Representation of~measurable functions almost everywhere by convergent series},
     journal = {Sbornik. Mathematics},
     pages = {469--508},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/}
}
                      
                      
                    F. G. Arutyunyan. Representation of~measurable functions almost everywhere by convergent series. Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 469-508. http://geodesic.mathdoc.fr/item/SM_1973_19_4_a0/
