On a fundamental theorem in the theory of dispersing billiards
Sbornik. Mathematics, Tome 19 (1973) no. 3, pp. 407-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Billiards are considered within domains in the plane or on the two-dimensional torus with the euclidian metric, where the boundaries of these domains are everywhere convex inward. It is shown that the flow $\{S_t\}$ generated by such a billiard is a $K$-system. A fundamental place is here assigned to the proof of the theorem showing that transversal fibers for the flow $\{S_t\}$ consist “on the whole” of sufficiently long regular segments. From this theorem follow assertions on the absolute continuity of transversal fibers for the billiards in question. Figures: 8. Bibliography: 6 titles.
@article{SM_1973_19_3_a3,
     author = {L. A. Bunimovich and Ya. G. Sinai},
     title = {On~a~fundamental theorem in the theory of dispersing billiards},
     journal = {Sbornik. Mathematics},
     pages = {407--423},
     year = {1973},
     volume = {19},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_3_a3/}
}
TY  - JOUR
AU  - L. A. Bunimovich
AU  - Ya. G. Sinai
TI  - On a fundamental theorem in the theory of dispersing billiards
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 407
EP  - 423
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_3_a3/
LA  - en
ID  - SM_1973_19_3_a3
ER  - 
%0 Journal Article
%A L. A. Bunimovich
%A Ya. G. Sinai
%T On a fundamental theorem in the theory of dispersing billiards
%J Sbornik. Mathematics
%D 1973
%P 407-423
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1973_19_3_a3/
%G en
%F SM_1973_19_3_a3
L. A. Bunimovich; Ya. G. Sinai. On a fundamental theorem in the theory of dispersing billiards. Sbornik. Mathematics, Tome 19 (1973) no. 3, pp. 407-423. http://geodesic.mathdoc.fr/item/SM_1973_19_3_a3/

[1] Ya. G. Sinai, “Dinamicheskie sistemy s uprugimi otrazheniyami”, Uspekhi matem. nauk, XXV:2 (152) (1970), 141–192 | MR

[2] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Trudy matem. in-ta im V. A. Steklova, XC (1967)

[3] V. I. Arnold, “Malye znamenateli i problema ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, Uspekhi matem. nauk, XVIII:6 (114) (1968), 91–192 | MR

[4] D. V. Anosov, Ya. G. Sinai, “Nekotorye gladkie ergodicheskie sistemy”, Uspekhi matem. nauk, XXII:5 (137) (1967), 107–172 | MR

[5] V. A. Rokhlin, “Izbrannye voprosy metricheskoi teorii dinamicheskikh sistem”, Uspekhi matem. nauk, IV:2 (30) (1949), 57–126

[6] E. Khopf, “Statistika geodezicheskikh linii na mnogoobraziyakh otritsatelnoi krivizny”, Uspekhi matem. nauk, IV:2 (30) (1949), 129–170