On~a~coercive inequality for an elliptic operator in infinitely many independent variables
Sbornik. Mathematics, Tome 19 (1973) no. 3, pp. 395-406

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper a coercive inequality is established for an infinite-dimensional elliptic differential operator of order $2m$, and a theorem on smoothness of a generalized solution of the Dirichlet problem for an equation containing such an operator is established. Bibliography: 7 titles.
@article{SM_1973_19_3_a2,
     author = {N. N. Frolov},
     title = {On~a~coercive inequality for an elliptic operator in infinitely many independent variables},
     journal = {Sbornik. Mathematics},
     pages = {395--406},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_3_a2/}
}
TY  - JOUR
AU  - N. N. Frolov
TI  - On~a~coercive inequality for an elliptic operator in infinitely many independent variables
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 395
EP  - 406
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_3_a2/
LA  - en
ID  - SM_1973_19_3_a2
ER  - 
%0 Journal Article
%A N. N. Frolov
%T On~a~coercive inequality for an elliptic operator in infinitely many independent variables
%J Sbornik. Mathematics
%D 1973
%P 395-406
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_3_a2/
%G en
%F SM_1973_19_3_a2
N. N. Frolov. On~a~coercive inequality for an elliptic operator in infinitely many independent variables. Sbornik. Mathematics, Tome 19 (1973) no. 3, pp. 395-406. http://geodesic.mathdoc.fr/item/SM_1973_19_3_a2/