An inequality of the isoperimetric type for a~domain in a~Riemannian space
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 257-274

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider in the $n$-dimensional Riemannian space a domain with compact closure $T$ bounded by a regular hypersurface $\Gamma$. We assume that the sectional curvatures in $T$ are positive and the boundary $\Gamma$ is strictly convex. We let $V$ denote the volume of $T$, $S$ the $(n-1)$-dimensional volume of $\Gamma$, $H$ the integral mean curvature of $\Gamma$, and $r$ the radius of the inscribed ball. The basic result is the inequality $V\leqslant\frac{S^2}H$, which is implied by the two estimates $V\leqslant Sr$ and $r\leqslant\frac SH$. Both these bounds are exact. Bibliography: 6 titles.
@article{SM_1973_19_2_a9,
     author = {B. V. Dekster},
     title = {An inequality of the isoperimetric type for a~domain in {a~Riemannian} space},
     journal = {Sbornik. Mathematics},
     pages = {257--274},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a9/}
}
TY  - JOUR
AU  - B. V. Dekster
TI  - An inequality of the isoperimetric type for a~domain in a~Riemannian space
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 257
EP  - 274
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_2_a9/
LA  - en
ID  - SM_1973_19_2_a9
ER  - 
%0 Journal Article
%A B. V. Dekster
%T An inequality of the isoperimetric type for a~domain in a~Riemannian space
%J Sbornik. Mathematics
%D 1973
%P 257-274
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_2_a9/
%G en
%F SM_1973_19_2_a9
B. V. Dekster. An inequality of the isoperimetric type for a~domain in a~Riemannian space. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 257-274. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a9/