An inequality of the isoperimetric type for a~domain in a~Riemannian space
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 257-274
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider in the $n$-dimensional Riemannian space a domain with compact closure $T$ bounded by a regular hypersurface $\Gamma$. We assume that the sectional curvatures in $T$ are positive and the boundary $\Gamma$ is strictly convex.
We let $V$ denote the volume of $T$, $S$ the $(n-1)$-dimensional volume of $\Gamma$, $H$ the integral mean curvature of $\Gamma$, and $r$ the radius of the inscribed ball. The basic result is the inequality $V\leqslant\frac{S^2}H$, which is implied by the two estimates $V\leqslant Sr$ and $r\leqslant\frac SH$. Both these bounds are exact.
Bibliography: 6 titles.
@article{SM_1973_19_2_a9,
author = {B. V. Dekster},
title = {An inequality of the isoperimetric type for a~domain in {a~Riemannian} space},
journal = {Sbornik. Mathematics},
pages = {257--274},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a9/}
}
B. V. Dekster. An inequality of the isoperimetric type for a~domain in a~Riemannian space. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 257-274. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a9/