Generalized Bessel models for a symplectic group of rank 2
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 243-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove a uniqueness theorem for an analogue of the Bessel model of an irreducible representation of a symplectic group of rank 2 over a disconnected local field. Bibliography: 4 titles.
@article{SM_1973_19_2_a8,
     author = {M. E. Novodvorskii and I. I. Pyatetskii-Shapiro},
     title = {Generalized {Bessel} models for a~symplectic group of rank~2},
     journal = {Sbornik. Mathematics},
     pages = {243--255},
     year = {1973},
     volume = {19},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a8/}
}
TY  - JOUR
AU  - M. E. Novodvorskii
AU  - I. I. Pyatetskii-Shapiro
TI  - Generalized Bessel models for a symplectic group of rank 2
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 243
EP  - 255
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_2_a8/
LA  - en
ID  - SM_1973_19_2_a8
ER  - 
%0 Journal Article
%A M. E. Novodvorskii
%A I. I. Pyatetskii-Shapiro
%T Generalized Bessel models for a symplectic group of rank 2
%J Sbornik. Mathematics
%D 1973
%P 243-255
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1973_19_2_a8/
%G en
%F SM_1973_19_2_a8
M. E. Novodvorskii; I. I. Pyatetskii-Shapiro. Generalized Bessel models for a symplectic group of rank 2. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 243-255. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a8/

[1] H. Jacquet, R. P. Langlands, Automorphic forms on $GL (2)$, Lect. Notes in Math., 114, Springer-Verlag, 1970 | MR | Zbl

[2] Seminar on algebraic groups, Lect. Notes in Math, 131, Springer-Verlag, 1971, D-45

[3] A. N. Andrianov, “Ryady Dirikhle s eilerovskim proizvedeniem v teorii zigelevykh modulyarnykh form”, Trudy matem. in-ta im. V. A. Steklova, CXII (1971), 73–94 | MR

[4] M. E. Novodvorskii, I. I. Pyatetskii-Shapiro, “Beskonechnomernye abelevy mnogoobraziya i unitarnye predstavleniya grupp”, Matem. sb., 77 (119) (1968), 3–20 | MR | Zbl