@article{SM_1973_19_2_a7,
author = {L. M. Martynov},
title = {On accessible classes of groups and semigroups},
journal = {Sbornik. Mathematics},
pages = {231--241},
year = {1973},
volume = {19},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a7/}
}
L. M. Martynov. On accessible classes of groups and semigroups. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a7/
[1] L. N. Shevrin, L. M. Martynov, “O dostizhimykh klassakh algebr”, Sib. matem. zh., XII:6 (1971), 1363–1381
[2] A. I. Maltsev, “Ob umnozhenii klassov algebraicheskikh sistem”, Sib. matem. zh., VIII:2 (1967), 346–365
[3] A. I. Maltsev, Algebraicheskie sistemy, izd-vo «Nauka», Moskva, 1970 | MR
[4] A. I. Maltsev, “Obobschenno niltyutentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25 (67) (1949), 347–366
[5] V. N. Salii, “Ekvatsionalno normalnye mnogoobraziya polugrupp”, Izv. VUZov, Matematika, 1969, no. 5, 61–68 | MR | Zbl
[6] B. I. Plotkin, “O funktorialakh, radikalakh i koradikalakh v gruppakh”, Matem. zap. Uralskogo un-ta, 7:3 (1970), 150–182 | MR | Zbl
[7] Kh. Neiman, Mnogoobraziya grupp, izd-vo «Mir», Moskva, 1969 | MR
[8] F. W. Levi, “Über die Untergruppen der freien Gruppen, II”, Math. Z., 37 (1933), 90–97 | DOI | MR | Zbl
[9] P. M. Neumann, “On the structure of standard wreath products of groups”, Math. Z., 84 (1964), 343–373 | DOI | MR | Zbl
[10] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl
[11] L. Ya. Kulikov, “Obobschennye primarnye gruppy, II”, Trudy Mosk. matem. ob-va, II (1953), 85–167 | MR
[12] L. Fuchs, “On the structure of abelian $p$-groups”, Acta Math. scient. Hungar, 4 (1953), 267–288 | DOI | MR | Zbl
[13] E. S. Lyapin, Polugruppy, Fizmatgiz, Moskva, 1960 | MR
[14] A. P. Biryukov, “Mnogoobraziya idempotentnykh polugrupp”, Algebra i logika, 9:3 (1970), 266–273
[15] J. A. Gerhard, “The lattice of equational classes of idempotent semigroups”, J. Algebra, 15:2 (1970), 195–224 | DOI | MR | Zbl