On accessible classes of groups and semigroups
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 231-241

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that any residually complete class of groups is either 1-step accessible in the class of all groups or is not $\gamma$-step accessible for any ordinal number $\gamma$, and there is given an extensive class of varieties of semigroups which cannot be $\gamma$-step accessible in the class of all semigroups. Bibliography: 15 titles.
@article{SM_1973_19_2_a7,
     author = {L. M. Martynov},
     title = {On accessible classes of groups and semigroups},
     journal = {Sbornik. Mathematics},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a7/}
}
TY  - JOUR
AU  - L. M. Martynov
TI  - On accessible classes of groups and semigroups
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 231
EP  - 241
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_2_a7/
LA  - en
ID  - SM_1973_19_2_a7
ER  - 
%0 Journal Article
%A L. M. Martynov
%T On accessible classes of groups and semigroups
%J Sbornik. Mathematics
%D 1973
%P 231-241
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_2_a7/
%G en
%F SM_1973_19_2_a7
L. M. Martynov. On accessible classes of groups and semigroups. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a7/