On the decomposition of an entire function of finite order into factors having given growth
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 225-226
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the following result is proved:
Theorem. Let $\lambda_i,$ $i=1,\dots,n,$ be given such that $\lambda_i\geqslant0$ and $\sum\lambda_i=1$. Then any entire function $f(z)$ of finite order $\rho$ can be presented as a product of factors $f_i(z)$ such that
$$
\ln|f_i(z)|=\lambda_i\ln|f(z)|+o(|z|^\rho),\quad i=1,\dots,n,
$$
as $z\to\infty,$ $z$ outside a $C_0$-set. Bibliography: 3 titles.
			
            
            
            
          
        
      @article{SM_1973_19_2_a5,
     author = {V. S. Azarin},
     title = {On the decomposition of an entire function of finite order into factors having given growth},
     journal = {Sbornik. Mathematics},
     pages = {225--226},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a5/}
}
                      
                      
                    V. S. Azarin. On the decomposition of an entire function of finite order into factors having given growth. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 225-226. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a5/
