On the decomposition of an entire function of finite order into factors having given growth
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 225-226

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the following result is proved: Theorem. Let $\lambda_i,$ $i=1,\dots,n,$ be given such that $\lambda_i\geqslant0$ and $\sum\lambda_i=1$. Then any entire function $f(z)$ of finite order $\rho$ can be presented as a product of factors $f_i(z)$ such that $$ \ln|f_i(z)|=\lambda_i\ln|f(z)|+o(|z|^\rho),\quad i=1,\dots,n, $$ as $z\to\infty,$ $z$ outside a $C_0$-set. Bibliography: 3 titles.
@article{SM_1973_19_2_a5,
     author = {V. S. Azarin},
     title = {On the decomposition of an entire function of finite order into factors having given growth},
     journal = {Sbornik. Mathematics},
     pages = {225--226},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a5/}
}
TY  - JOUR
AU  - V. S. Azarin
TI  - On the decomposition of an entire function of finite order into factors having given growth
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 225
EP  - 226
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_2_a5/
LA  - en
ID  - SM_1973_19_2_a5
ER  - 
%0 Journal Article
%A V. S. Azarin
%T On the decomposition of an entire function of finite order into factors having given growth
%J Sbornik. Mathematics
%D 1973
%P 225-226
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_2_a5/
%G en
%F SM_1973_19_2_a5
V. S. Azarin. On the decomposition of an entire function of finite order into factors having given growth. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 225-226. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a5/