A~filtration in the three-dimensional Cremona group
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 191-208

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the concept of the genus of a birational mapping of nonsingular three-dimensional algebraic varieties over a field of characteristic 0 and prove that the automorphisms whose genus is at most a fixed number form a group. We also prove that a birational morphism of nonsingular three-dimensional varieties splits into a composition of a map which is an inverse to a morphism of genus 0 and monoidal transformations. Bibliography: 9 titles.
@article{SM_1973_19_2_a3,
     author = {M. A. Frumkin},
     title = {A~filtration in the three-dimensional {Cremona} group},
     journal = {Sbornik. Mathematics},
     pages = {191--208},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a3/}
}
TY  - JOUR
AU  - M. A. Frumkin
TI  - A~filtration in the three-dimensional Cremona group
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 191
EP  - 208
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_2_a3/
LA  - en
ID  - SM_1973_19_2_a3
ER  - 
%0 Journal Article
%A M. A. Frumkin
%T A~filtration in the three-dimensional Cremona group
%J Sbornik. Mathematics
%D 1973
%P 191-208
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_2_a3/
%G en
%F SM_1973_19_2_a3
M. A. Frumkin. A~filtration in the three-dimensional Cremona group. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 191-208. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a3/