On the rectification and circle formation problems
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 177-189
Voir la notice de l'article provenant de la source Math-Net.Ru
The rectification and circle formation problems were posed by A. M. Leontovich, I. I. Pyatetskii-Shapiro and O. N. Stavskaya (Automat. i Telemeh. № 4, 1970; № 2, 1971). In this paper we set up a rule which achieves the rectification of an arbitrary “admissible” nonclosed polygonal line (i.e. a polygonal line in which no section degenerates to a point nor lies on the preceding or following section). For each natural number $N$ we prove the existence of a similar rule which effects circle formation of an arbitrary $n$-sided ($n$) polygon with a nonzero rotation number and with the angle between adjacent sides different from $\pi$.
Bibliography: 4 titles.
@article{SM_1973_19_2_a2,
author = {Yu. S. Ilyashenko},
title = {On the rectification and circle formation problems},
journal = {Sbornik. Mathematics},
pages = {177--189},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a2/}
}
Yu. S. Ilyashenko. On the rectification and circle formation problems. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 177-189. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a2/