@article{SM_1973_19_2_a12,
author = {I. M. Krichever},
title = {Actions of finite cyclic groups on quasicomplex manifolds},
journal = {Sbornik. Mathematics},
pages = {305--319},
year = {1973},
volume = {19},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a12/}
}
I. M. Krichever. Actions of finite cyclic groups on quasicomplex manifolds. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 305-319. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a12/
[1] P. Konner, E. Floid, Gladkie periodicheskie otobrazheniya, izd-vo «Mir», Moskva, 1969
[2] G. G. Kasparov, “Invarianty klassicheskikh linzovykh mnogoobrazii v teorii kobordizmov”, Izv. AN SSSR, seriya matem., 33 (1969), 735–747 | MR | Zbl
[3] A. S. Mischenko, “Mnogoobraziya s deistviem gruppy $\mathbf{Z}_p$ i nepodvizhnye tochki”, Matem. zametki, 4:4 (1968), 381–386 | Zbl
[4] S. P. Novikov, “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR, seriya matem., 32 (1968), 1245–1263 | MR
[5] I. M. Krichever, “O bordizmakh grupp, svobodno deistvuyuschikh na sferakh”, Uspekhi matem. nauk, XXVI:6 (162) (1971), 245–246
[6] A. S. Mischenko, “Bordizmy s deistviem gruppy $\mathbf{Z}_p$ i nepodvizhnye tochki”, Matem. sb., 80 (122) (1969), 307–313 | MR | Zbl
[7] S. M. Gusein-Zade, I. M. Krichever, “O formulakh dlya nepodvizhnykh tochek deistviya gruppy $Z_p$”, Uspekhi matem. nauk, XXVIII:1(169) (1973), 237–238 | MR | Zbl
[8] T. T. Dieck, “Bordism of $G$-manifolds and integrality theorems”, Topology, 9:4 (1970), 345–358 | DOI | MR | Zbl
[9] G. Segal, “Equivariant $K$-theory”, Publs Math. Inst. Hautes Études scient., 34 (1968), 113–128 | DOI | MR | Zbl
[10] D. Quillen, Elementary proof of some results of cobordism theory, Preprint, Inst. for Adv. Study, Princeton
[11] V. M. Bukhshtaber, S. P. Novikov, “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84 (126) (1971), 81–118 | MR | Zbl