Actions of finite cyclic groups on quasicomplex manifolds
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 305-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a classification is given of actions of finite cyclic groups on quasicomplex manifolds in terms of the invariants of cobordism theory. Moreover, the methods of the paper allow one to understand the geometric nature of known results of a series of authors on actions of cyclic groups of prime order. Bibliography: 11 titles.
@article{SM_1973_19_2_a12,
     author = {I. M. Krichever},
     title = {Actions of finite cyclic groups on quasicomplex manifolds},
     journal = {Sbornik. Mathematics},
     pages = {305--319},
     year = {1973},
     volume = {19},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a12/}
}
TY  - JOUR
AU  - I. M. Krichever
TI  - Actions of finite cyclic groups on quasicomplex manifolds
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 305
EP  - 319
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_2_a12/
LA  - en
ID  - SM_1973_19_2_a12
ER  - 
%0 Journal Article
%A I. M. Krichever
%T Actions of finite cyclic groups on quasicomplex manifolds
%J Sbornik. Mathematics
%D 1973
%P 305-319
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1973_19_2_a12/
%G en
%F SM_1973_19_2_a12
I. M. Krichever. Actions of finite cyclic groups on quasicomplex manifolds. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 305-319. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a12/

[1] P. Konner, E. Floid, Gladkie periodicheskie otobrazheniya, izd-vo «Mir», Moskva, 1969

[2] G. G. Kasparov, “Invarianty klassicheskikh linzovykh mnogoobrazii v teorii kobordizmov”, Izv. AN SSSR, seriya matem., 33 (1969), 735–747 | MR | Zbl

[3] A. S. Mischenko, “Mnogoobraziya s deistviem gruppy $\mathbf{Z}_p$ i nepodvizhnye tochki”, Matem. zametki, 4:4 (1968), 381–386 | Zbl

[4] S. P. Novikov, “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR, seriya matem., 32 (1968), 1245–1263 | MR

[5] I. M. Krichever, “O bordizmakh grupp, svobodno deistvuyuschikh na sferakh”, Uspekhi matem. nauk, XXVI:6 (162) (1971), 245–246

[6] A. S. Mischenko, “Bordizmy s deistviem gruppy $\mathbf{Z}_p$ i nepodvizhnye tochki”, Matem. sb., 80 (122) (1969), 307–313 | MR | Zbl

[7] S. M. Gusein-Zade, I. M. Krichever, “O formulakh dlya nepodvizhnykh tochek deistviya gruppy $Z_p$”, Uspekhi matem. nauk, XXVIII:1(169) (1973), 237–238 | MR | Zbl

[8] T. T. Dieck, “Bordism of $G$-manifolds and integrality theorems”, Topology, 9:4 (1970), 345–358 | DOI | MR | Zbl

[9] G. Segal, “Equivariant $K$-theory”, Publs Math. Inst. Hautes Études scient., 34 (1968), 113–128 | DOI | MR | Zbl

[10] D. Quillen, Elementary proof of some results of cobordism theory, Preprint, Inst. for Adv. Study, Princeton

[11] V. M. Bukhshtaber, S. P. Novikov, “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84 (126) (1971), 81–118 | MR | Zbl