Local knotting of submanifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 166-176
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the author investigates the modification of the fundamental group of the complement of a submanifold of codimension 2 by knotting in a neighborhood of one of its points. With the aid of such knotting he constructs closed nonorientable surfaces in $\mathbf R^4$ with finite noncommutative groups. In the appendix he constructs a nontrivial knot such that, knotting by means of it does not change the type of the simplest imbedding $\mathbf RP^2\to\mathbf R^4$.
Figures: 6. 
Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_1973_19_2_a1,
     author = {O. Ya. Viro},
     title = {Local knotting of submanifolds},
     journal = {Sbornik. Mathematics},
     pages = {166--176},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a1/}
}
                      
                      
                    O. Ya. Viro. Local knotting of submanifolds. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 166-176. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a1/
