Local knotting of submanifolds
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 166-176

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author investigates the modification of the fundamental group of the complement of a submanifold of codimension 2 by knotting in a neighborhood of one of its points. With the aid of such knotting he constructs closed nonorientable surfaces in $\mathbf R^4$ with finite noncommutative groups. In the appendix he constructs a nontrivial knot such that, knotting by means of it does not change the type of the simplest imbedding $\mathbf RP^2\to\mathbf R^4$. Figures: 6. Bibliography: 10 titles.
@article{SM_1973_19_2_a1,
     author = {O. Ya. Viro},
     title = {Local knotting of submanifolds},
     journal = {Sbornik. Mathematics},
     pages = {166--176},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a1/}
}
TY  - JOUR
AU  - O. Ya. Viro
TI  - Local knotting of submanifolds
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 166
EP  - 176
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_2_a1/
LA  - en
ID  - SM_1973_19_2_a1
ER  - 
%0 Journal Article
%A O. Ya. Viro
%T Local knotting of submanifolds
%J Sbornik. Mathematics
%D 1973
%P 166-176
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_2_a1/
%G en
%F SM_1973_19_2_a1
O. Ya. Viro. Local knotting of submanifolds. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 166-176. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a1/