On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic curve.~II
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 139-156
Voir la notice de l'article provenant de la source Math-Net.Ru
Dynamical systems are considered which are close to systems with a structurally unstable homoclinic curve. A definition of accessibility of a bifuration surface is given, and it is established that a bifurcation surface $H^1$ corresponding to systems with a structurally unstable homoclinic curve will be inaccessible from at least one side. Cases are singled out in which $H^1$ can be the boundary separating Morse–Smale systems from systems with a countable number of periodic motions.
Bibliography: 14 titles.
@article{SM_1973_19_1_a9,
author = {N. K. Gavrilov and L. P. Shilnikov},
title = {On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic {curve.~II}},
journal = {Sbornik. Mathematics},
pages = {139--156},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a9/}
}
TY - JOUR AU - N. K. Gavrilov AU - L. P. Shilnikov TI - On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic curve.~II JO - Sbornik. Mathematics PY - 1973 SP - 139 EP - 156 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a9/ LA - en ID - SM_1973_19_1_a9 ER -
%0 Journal Article %A N. K. Gavrilov %A L. P. Shilnikov %T On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic curve.~II %J Sbornik. Mathematics %D 1973 %P 139-156 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a9/ %G en %F SM_1973_19_1_a9
N. K. Gavrilov; L. P. Shilnikov. On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic curve.~II. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 139-156. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a9/