On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic curve.~II
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 139-156

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical systems are considered which are close to systems with a structurally unstable homoclinic curve. A definition of accessibility of a bifuration surface is given, and it is established that a bifurcation surface $H^1$ corresponding to systems with a structurally unstable homoclinic curve will be inaccessible from at least one side. Cases are singled out in which $H^1$ can be the boundary separating Morse–Smale systems from systems with a countable number of periodic motions. Bibliography: 14 titles.
@article{SM_1973_19_1_a9,
     author = {N. K. Gavrilov and L. P. Shilnikov},
     title = {On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic {curve.~II}},
     journal = {Sbornik. Mathematics},
     pages = {139--156},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a9/}
}
TY  - JOUR
AU  - N. K. Gavrilov
AU  - L. P. Shilnikov
TI  - On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic curve.~II
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 139
EP  - 156
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a9/
LA  - en
ID  - SM_1973_19_1_a9
ER  - 
%0 Journal Article
%A N. K. Gavrilov
%A L. P. Shilnikov
%T On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic curve.~II
%J Sbornik. Mathematics
%D 1973
%P 139-156
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a9/
%G en
%F SM_1973_19_1_a9
N. K. Gavrilov; L. P. Shilnikov. On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic curve.~II. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 139-156. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a9/