On mappings of families of oricycles in Lobachevskii space
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 131-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate families of oricycles of $n$-dimensional Lobachevskii space for $n\geqslant2$ whose invariance under a bijective mapping of the space is sufficient to characterize the mapping as a motion. Bibliography: 4 titles.
@article{SM_1973_19_1_a8,
     author = {A. K. Guts},
     title = {On mappings of families of~oricycles in {Lobachevskii} space},
     journal = {Sbornik. Mathematics},
     pages = {131--138},
     year = {1973},
     volume = {19},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a8/}
}
TY  - JOUR
AU  - A. K. Guts
TI  - On mappings of families of oricycles in Lobachevskii space
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 131
EP  - 138
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a8/
LA  - en
ID  - SM_1973_19_1_a8
ER  - 
%0 Journal Article
%A A. K. Guts
%T On mappings of families of oricycles in Lobachevskii space
%J Sbornik. Mathematics
%D 1973
%P 131-138
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a8/
%G en
%F SM_1973_19_1_a8
A. K. Guts. On mappings of families of oricycles in Lobachevskii space. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 131-138. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a8/

[1] A. D. Aleksandrov, V. V. Ovchinnikova, “Zamechaniya k osnovam teorii otnositelnosti”, Vestnik LGU, 1953, no. 11, 95–100

[2] A. D. Alexandrov, “Contribution to chronogeometry”, Canad. J. Math., 19:6 (1967), 1119–1128 | MR

[3] B. A. Rozenfeld, Mnogomernye prostranstva, izd-vo «Nauka», Moskva, 1966 | MR

[4] A. D. Aleksandrov, “Ob odnom obobschenii funktsionalnogo uravneniya $f(x+y) =f(x) +f(y)$”, Sib. matem. zh., XI:2 (1970), 264–279 | MR