On mappings of families of oricycles in Lobachevskii space
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 131-138
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate families of oricycles of $n$-dimensional Lobachevskii space for $n\geqslant2$ whose invariance under a bijective mapping of the space is sufficient to characterize the mapping as a motion. Bibliography: 4 titles.
@article{SM_1973_19_1_a8,
author = {A. K. Guts},
title = {On mappings of families of~oricycles in {Lobachevskii} space},
journal = {Sbornik. Mathematics},
pages = {131--138},
year = {1973},
volume = {19},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a8/}
}
A. K. Guts. On mappings of families of oricycles in Lobachevskii space. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 131-138. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a8/
[1] A. D. Aleksandrov, V. V. Ovchinnikova, “Zamechaniya k osnovam teorii otnositelnosti”, Vestnik LGU, 1953, no. 11, 95–100
[2] A. D. Alexandrov, “Contribution to chronogeometry”, Canad. J. Math., 19:6 (1967), 1119–1128 | MR
[3] B. A. Rozenfeld, Mnogomernye prostranstva, izd-vo «Nauka», Moskva, 1966 | MR
[4] A. D. Aleksandrov, “Ob odnom obobschenii funktsionalnogo uravneniya $f(x+y) =f(x) +f(y)$”, Sib. matem. zh., XI:2 (1970), 264–279 | MR