Behavior of the curve $x^3+y^3=1$ in a cyclotomic $\Gamma$-extension
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 117-130
Cet article a éte moissonné depuis la source Math-Net.Ru
This article proves that the group of rational points on the curve in the title remains finite when the $3^n$th roots of unity are adjoined. Here the 3-component of the Tate–Shafarevich group remains finite, and exact formulas are given for its order. Bibliography: 2 titles.
@article{SM_1973_19_1_a7,
author = {M. I. Bashmakov and N. Zh. Al'-Nader},
title = {Behavior of the curve $x^3+y^3=1$ in a~cyclotomic $\Gamma$-extension},
journal = {Sbornik. Mathematics},
pages = {117--130},
year = {1973},
volume = {19},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a7/}
}
M. I. Bashmakov; N. Zh. Al'-Nader. Behavior of the curve $x^3+y^3=1$ in a cyclotomic $\Gamma$-extension. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 117-130. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a7/
[1] Yu. I. Manin, “Krugovye polya i modulyarnye krivye”, Uspekhi mat. nauk, XXVI:6 (162) (1971), 7–71 | MR
[2] I. R. Shafarevich, “Rasshireniya s zadannymi tochkami vetvleniya”, Inst. Hautes Etudes Sci. Publ. Math., 18