Behavior of the curve $x^3+y^3=1$ in a~cyclotomic $\Gamma$-extension
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 117-130

Voir la notice de l'article provenant de la source Math-Net.Ru

This article proves that the group of rational points on the curve in the title remains finite when the $3^n$th roots of unity are adjoined. Here the 3-component of the Tate–Shafarevich group remains finite, and exact formulas are given for its order. Bibliography: 2 titles.
@article{SM_1973_19_1_a7,
     author = {M. I. Bashmakov and N. Zh. Al'-Nader},
     title = {Behavior of the curve $x^3+y^3=1$ in a~cyclotomic $\Gamma$-extension},
     journal = {Sbornik. Mathematics},
     pages = {117--130},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a7/}
}
TY  - JOUR
AU  - M. I. Bashmakov
AU  - N. Zh. Al'-Nader
TI  - Behavior of the curve $x^3+y^3=1$ in a~cyclotomic $\Gamma$-extension
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 117
EP  - 130
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a7/
LA  - en
ID  - SM_1973_19_1_a7
ER  - 
%0 Journal Article
%A M. I. Bashmakov
%A N. Zh. Al'-Nader
%T Behavior of the curve $x^3+y^3=1$ in a~cyclotomic $\Gamma$-extension
%J Sbornik. Mathematics
%D 1973
%P 117-130
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a7/
%G en
%F SM_1973_19_1_a7
M. I. Bashmakov; N. Zh. Al'-Nader. Behavior of the curve $x^3+y^3=1$ in a~cyclotomic $\Gamma$-extension. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 117-130. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a7/