Products of ultrafilters and irresolvable spaces
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 105-115

Voir la notice de l'article provenant de la source Math-Net.Ru

A space dense in itself is said to be $k$-resolvable if there exists a system of cardinality $k$ of disjoint dense subsets. The main results of the paper can be formulated as follows: 1. If there exists a countably-centered free ultrafilter, then there are dense in themselves $T_1$-spaces whose product is irresolvable. 2. Any sets $X$ and $Y$ support irresolvable $T_1$-topologies whose product is maximally resolvable. 3. Assuming the continuum hypothesis, an ultrafilter whose cartesian square is dominated by only three ultrafilters is constructed on a countable set. 4. If a set of uncountable cardinality supports an ultrafilter whose square is dominated by exactly three ultrafilters, then its cardinality is measurable. A number of problems are posed. Bibliography: 9 titles.
@article{SM_1973_19_1_a6,
     author = {V. I. Malykhin},
     title = {Products of ultrafilters and irresolvable spaces},
     journal = {Sbornik. Mathematics},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a6/}
}
TY  - JOUR
AU  - V. I. Malykhin
TI  - Products of ultrafilters and irresolvable spaces
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 105
EP  - 115
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a6/
LA  - en
ID  - SM_1973_19_1_a6
ER  - 
%0 Journal Article
%A V. I. Malykhin
%T Products of ultrafilters and irresolvable spaces
%J Sbornik. Mathematics
%D 1973
%P 105-115
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a6/
%G en
%F SM_1973_19_1_a6
V. I. Malykhin. Products of ultrafilters and irresolvable spaces. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a6/