On $p$-spaces and their continuous maps
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 35-46

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorems are the main results of this paper. Theorem 1. Let $f\colon X\to Y$ be a closed mapping of the weakly paracompact $p$-space $X$. In order that the space $Y$ be weakly paracompact and plumed, it is necessary and sufficient that the mapping $f$ be peripherally bicompact. \smallskip Theorem 2. {\it Let $f\colon X\to Y$ be a closed mapping of a weakly paracompact $p$-space $X$. Then $Y=Y_0\cup Y_1,$ where the set $Y_1$ is $\sigma$-discrete in $Y$ and the set $f^{-1}y$ is bicompact for each point $y\in Y_0$.} An example is constructed of a weakly paracompact, locally compact, $\sigma$-paracompact space which is not normal and which cannot be mapped perfectly onto a space with a refining sequence of coverings. Bibliography: 22 titles.
@article{SM_1973_19_1_a2,
     author = {N. V. Velichko},
     title = {On $p$-spaces and their continuous maps},
     journal = {Sbornik. Mathematics},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a2/}
}
TY  - JOUR
AU  - N. V. Velichko
TI  - On $p$-spaces and their continuous maps
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 35
EP  - 46
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a2/
LA  - en
ID  - SM_1973_19_1_a2
ER  - 
%0 Journal Article
%A N. V. Velichko
%T On $p$-spaces and their continuous maps
%J Sbornik. Mathematics
%D 1973
%P 35-46
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a2/
%G en
%F SM_1973_19_1_a2
N. V. Velichko. On $p$-spaces and their continuous maps. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a2/