On $p$-spaces and their continuous maps
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 35-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorems are the main results of this paper. Theorem 1. Let $f\colon X\to Y$ be a closed mapping of the weakly paracompact $p$-space $X$. In order that the space $Y$ be weakly paracompact and plumed, it is necessary and sufficient that the mapping $f$ be peripherally bicompact. \smallskip Theorem 2. {\it Let $f\colon X\to Y$ be a closed mapping of a weakly paracompact $p$-space $X$. Then $Y=Y_0\cup Y_1,$ where the set $Y_1$ is $\sigma$-discrete in $Y$ and the set $f^{-1}y$ is bicompact for each point $y\in Y_0$.} An example is constructed of a weakly paracompact, locally compact, $\sigma$-paracompact space which is not normal and which cannot be mapped perfectly onto a space with a refining sequence of coverings. Bibliography: 22 titles.
@article{SM_1973_19_1_a2,
     author = {N. V. Velichko},
     title = {On $p$-spaces and their continuous maps},
     journal = {Sbornik. Mathematics},
     pages = {35--46},
     year = {1973},
     volume = {19},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a2/}
}
TY  - JOUR
AU  - N. V. Velichko
TI  - On $p$-spaces and their continuous maps
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 35
EP  - 46
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a2/
LA  - en
ID  - SM_1973_19_1_a2
ER  - 
%0 Journal Article
%A N. V. Velichko
%T On $p$-spaces and their continuous maps
%J Sbornik. Mathematics
%D 1973
%P 35-46
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a2/
%G en
%F SM_1973_19_1_a2
N. V. Velichko. On $p$-spaces and their continuous maps. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a2/

[1] A. V. Arkhangelskii, “Ob odnom klasse prostranstv, soderzhaschem vse metricheskie i vse lokalno bikompaktnye prostranstva”, Matem. sb., 67 (109) (1966), 55–85

[2] A. V. Arkhangelskii, “Otobrazheniya i prostranstva”, Uspekhi matem. nauk, XXI:4 (130) (1966), 133–184

[3] E.Čech, “On bicompact spaces”, Ann. Math., 38 (1937), 823–844 | DOI | MR

[4] P. S. Aleksandrov, P. S. Uryson, “Neobkhodimye i dostatochnye usloviya togo, chtoby topologicheskoe prostranstvo bylo metrizuemo”, P. S. Uryson, Trudy po topologii i drugim oblastyam matematiki, t. 2, Gostekhizdat, Moskva–Leningrad, 1951 | MR

[5] M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc., 41 (1937), 375–481 | DOI | MR | Zbl

[6] A. V. Arkhangelskii, “Bikompaktnye mnozhestva i topologiya prostranstv”, Trudy Mosk. matem. o-va, XIII (1965), 3–55

[7] E. Michael, “A note on closed maps and compact sets”, Israel J. Math., 2 (1964), 173–176 | DOI | MR | Zbl

[8] J. M. Worrel, “The closed continuous images of metacompact spaces”, Portugal. Math., 25 (1966), 175–179 | MR | Zbl

[9] M. Henriksen, J. R. Isbel, “Some properties of compactifications”, Duke Math. J., 25 (1958), 83–106 | DOI | MR

[10] R. Arens, J. Dugundji, “Remark on the concept of compactness”, Portugal. Math., 9 (1950), 141–143 | MR | Zbl

[11] V. V. Filippov, “O sovershennom obraze parakompaktnogo peristogo prostranstva”, DAN SSSR, 176:3 (1967), 533–535 | Zbl

[12] K. Morita, “On closed mappings”, Proc. Japan Acad., 32 (1956), 539–543 | DOI | MR | Zbl

[13] A. V. Arkhangelskii, “O zamknutykh otobrazheniyakh, bikompaktnykh mnozhestvakh i odnoi zadache P. S. Aleksandrova”, Matem. sb., 69 (111) (1966), 13–34

[14] N. S. Lashnev, “O nepreryvnykh razbieniyakh i zamknutykh otobrazheniyakh metricheskikh prostranstv”, DAN SSSR, 165:4 (1965), 756–758 | Zbl

[15] V. V. Filippov, “O peristykh parakomlaktakh”, DAN SSSR, 178:3 (1968), 555–558 | MR | Zbl

[16] R. H. Bing, “Metritation of topological spaces”, Canad. Math. J., 3 (1951), 175–186 | MR | Zbl

[17] V. I. Ponomarev, “Aksiomy schetnosti i nepreryvnye otobrazheniya”, Byull. Polsk. Akad. nauk, ser. matem., 8 (1960), 127–133 | MR

[18] E. Hewitt, “Rings of real-valued continuous functions, I”, Trans. Amer. Math. Soc., 64 (1948), 45–99 | DOI | MR | Zbl

[19] K. Morita, “Products of normal spaces with metric spaces”, Math. Ann., 154 (1964), 365–382 | DOI | MR | Zbl

[20] D. K. Burke, R. A. Stoltenberg, “A note on $p$-spaces and Moore spaces”, Pacific J. Math., 30 (1969), 601–608 | MR | Zbl

[21] T. Ishii, “On closed mappings and $M$-spaces, II”, Proc. Japan Acad., 43 (1967), 757–761 | DOI | MR | Zbl

[22] L. Zambakhidze, “O nekotorykh svoistvakh prostranstv s bikompaktnymi narostami konechnykh poryadkov”, DAN SSSR, 191:2 (1970), 263–266 | Zbl