On rational approximation of analytic functions
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 157-163
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $E$ be a regular compact set, and $D$ an arbitrary domain containing $E$. A constructive characterization is given of the class of functions analytic in $D$, using best approximation on $E$ by rational functions with a specially chosen sequence of poles. Bibliography: 4 titles.
@article{SM_1973_19_1_a10,
author = {P. G. Boyadzhiev},
title = {On rational approximation of analytic functions},
journal = {Sbornik. Mathematics},
pages = {157--163},
year = {1973},
volume = {19},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a10/}
}
P. G. Boyadzhiev. On rational approximation of analytic functions. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 157-163. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a10/
[1] T. Bagby, “On interpolation by rational functions”, Duke Math. J., 36:1 (1969), 95–104 | DOI | MR | Zbl
[2] A. L. Levin, V. M. Tikhomirov, “Ob odnoi teoreme Erokhina”, Uspekhi matem. nauk, XXIII:1 (139) (1968), 119–132
[3] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, Moskva, 1961 | MR
[4] Y. C. Shen, “On interpolation and appoximation by rational functions with preassigned poles”, J. Chinese. Math. Soc., 1 (1936), 154–173 | Zbl