On rational approximation of analytic functions
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 157-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $E$ be a regular compact set, and $D$ an arbitrary domain containing $E$. A constructive characterization is given of the class of functions analytic in $D$, using best approximation on $E$ by rational functions with a specially chosen sequence of poles. Bibliography: 4 titles.
@article{SM_1973_19_1_a10,
     author = {P. G. Boyadzhiev},
     title = {On rational approximation of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {157--163},
     year = {1973},
     volume = {19},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a10/}
}
TY  - JOUR
AU  - P. G. Boyadzhiev
TI  - On rational approximation of analytic functions
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 157
EP  - 163
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a10/
LA  - en
ID  - SM_1973_19_1_a10
ER  - 
%0 Journal Article
%A P. G. Boyadzhiev
%T On rational approximation of analytic functions
%J Sbornik. Mathematics
%D 1973
%P 157-163
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a10/
%G en
%F SM_1973_19_1_a10
P. G. Boyadzhiev. On rational approximation of analytic functions. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 157-163. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a10/

[1] T. Bagby, “On interpolation by rational functions”, Duke Math. J., 36:1 (1969), 95–104 | DOI | MR | Zbl

[2] A. L. Levin, V. M. Tikhomirov, “Ob odnoi teoreme Erokhina”, Uspekhi matem. nauk, XXIII:1 (139) (1968), 119–132

[3] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, Moskva, 1961 | MR

[4] Y. C. Shen, “On interpolation and appoximation by rational functions with preassigned poles”, J. Chinese. Math. Soc., 1 (1936), 154–173 | Zbl