Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 23-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a Frobenius order in a simple algebra over the field of $p$-adic numbers, $\dim_{\Lambda^e}\Lambda=0$. For a finitely-generated $p$-periodic $\Lambda$-bimodule, we establish the existence of a $\Lambda^e/p$-free resolution whose generating function is an associate of the Poincaré series in the ring of formal power series with integral coefficients. Our subsequent investigations are restricted to orders of the form described which in addition satisfy a certain "disjointness condition modulo $p$", which is formulated in terms of constraints on the Cartan matrix of the ring $\Lambda^e/p$. We find conditions sufficient for the existence of a $p$-periodic module with trivial homology (in the sense of Hochschild) and having infinite projective dimension over the ring $\Lambda^e/p$. We prove a Nakayama-type theorem on the triviality of the cohomology groups of $\Lambda$ with coefficients in irreducible $\Lambda$-bimodules. Bibliography: 12 titles.
@article{SM_1973_19_1_a1,
     author = {F. R. Bobovich},
     title = {Projective resolutions and cohomological triviality of $p$-periodic bimodules over {Frobenius} orders},
     journal = {Sbornik. Mathematics},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a1/}
}
TY  - JOUR
AU  - F. R. Bobovich
TI  - Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 23
EP  - 34
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a1/
LA  - en
ID  - SM_1973_19_1_a1
ER  - 
%0 Journal Article
%A F. R. Bobovich
%T Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders
%J Sbornik. Mathematics
%D 1973
%P 23-34
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a1/
%G en
%F SM_1973_19_1_a1
F. R. Bobovich. Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a1/