Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 23-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Lambda$ be a Frobenius order in a simple algebra over the field of $p$-adic numbers, $\dim_{\Lambda^e}\Lambda=0$. For a finitely-generated $p$-periodic $\Lambda$-bimodule, we establish the existence of a $\Lambda^e/p$-free resolution whose generating function is an associate of the Poincaré series in the ring of formal power series with integral coefficients. Our subsequent investigations are restricted to orders of the form described which in addition satisfy a certain "disjointness condition modulo $p$", which is formulated in terms of constraints on the Cartan matrix of the ring $\Lambda^e/p$. We find conditions sufficient for the existence of a $p$-periodic module with trivial homology (in the sense of Hochschild) and having infinite projective dimension over the ring $\Lambda^e/p$. We prove a Nakayama-type theorem on the triviality of the cohomology groups of $\Lambda$ with coefficients in irreducible $\Lambda$-bimodules. Bibliography: 12 titles.
@article{SM_1973_19_1_a1,
     author = {F. R. Bobovich},
     title = {Projective resolutions and cohomological triviality of $p$-periodic bimodules over {Frobenius} orders},
     journal = {Sbornik. Mathematics},
     pages = {23--34},
     year = {1973},
     volume = {19},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a1/}
}
TY  - JOUR
AU  - F. R. Bobovich
TI  - Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 23
EP  - 34
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a1/
LA  - en
ID  - SM_1973_19_1_a1
ER  - 
%0 Journal Article
%A F. R. Bobovich
%T Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders
%J Sbornik. Mathematics
%D 1973
%P 23-34
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a1/
%G en
%F SM_1973_19_1_a1
F. R. Bobovich. Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a1/

[1] Algebraicheskaya teoriya chisel, eds. Dzh. Kassels, A. Frelikh, izd-vo «Mir», Moskva, 1969 | MR

[2] S. Eilenberg, “Homological dimension and syzygies”, Ann. Math., 64:2 (1956), 328–336 | DOI | MR | Zbl

[3] T. Nakayama, “A theorem on modules of trivial cohomology over a finite group”, Proc. Japan. Acad., 32:6 (1956), 373–376 | DOI | MR | Zbl

[4] T. Nakayama, “On modules of trivial cohomology over a finite group, III”, J. Math., 1:1 (1957), 36–46 | MR

[5] S. Eilenberg, T. Nakayama, “On the dimension of modules and algebras. II: Frobenius algebras and quasi-Frobenius rings”, Nagoya Math. J., 9 (1955), 1–16 | MR | Zbl

[6] E. Artin, C. J. Nesbitt, R. M. Thrall, “Rings with minimum condition”, Univ. of Michigan Publ. in Math., 1944, no. 1 | MR

[7] C. J. Nesbitt, R. M. Thrall, “Some ring theorems with applications to modular representations”, Ann. Math., 47:3 (1946), 551–567 | DOI | MR | Zbl

[8] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, IL, Moskva, 1960

[9] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, izd-vo «Nauka», Moskva, 1969 | MR

[10] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, izd-vo «Nauka», Moskva, 1964 | MR

[11] F. R. Bobovich, D. K. Faddeev, “O kogomologiyakh Khokhshilda dlya $Z$-kolets so stepennym bazisom”, Matem. zametki, 4:2 (1968), 141–150

[12] F. R. Bobovich, “Ob analogakh modulei Shevalle v teorii kogomologii Khokhshilda”, Matem. zametki, 9:5 (1971), 561–568 | Zbl