Rational equivalence of zero-cycles
Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 571-588 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we continue our study of rational equivalence of zero-cycles on algebraic varieties. In particular, we study the case where the dimension of the group of classes of zero-cycles of degree zero modulo rational equivalence is finite, and prove that it coincides with the Albanese variety in this case. Bibliography: 3 titles.
@article{SM_1972_18_4_a2,
     author = {A. A. Roitman},
     title = {Rational equivalence of zero-cycles},
     journal = {Sbornik. Mathematics},
     pages = {571--588},
     year = {1972},
     volume = {18},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_4_a2/}
}
TY  - JOUR
AU  - A. A. Roitman
TI  - Rational equivalence of zero-cycles
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 571
EP  - 588
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_4_a2/
LA  - en
ID  - SM_1972_18_4_a2
ER  - 
%0 Journal Article
%A A. A. Roitman
%T Rational equivalence of zero-cycles
%J Sbornik. Mathematics
%D 1972
%P 571-588
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1972_18_4_a2/
%G en
%F SM_1972_18_4_a2
A. A. Roitman. Rational equivalence of zero-cycles. Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 571-588. http://geodesic.mathdoc.fr/item/SM_1972_18_4_a2/

[1] D. Mumford, “Rational equivalence of $0$-cycles on surfaces”, Math. Kyoto Univ., 9:2 (1969), 195–204 | MR | Zbl

[2] A. A. Roitman, “$\Gamma$-ekvivalentnost nulmernykh tsiklov”, Matem. sb., 86(128) (1971), 557–570 | MR | Zbl

[3] I. R. Shafarevich, Algebraicheskie poverkhnosti, Trudy Matem. in-ta im. V. A. Steklova, LXXV, 1965 | MR | Zbl