Rational equivalence of zero-cycles
Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 571-588
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we continue our study of rational equivalence of zero-cycles on algebraic varieties. In particular, we study the case where the dimension of the group of classes of zero-cycles of degree zero modulo rational equivalence is finite, and prove that it coincides with the Albanese variety in this case. Bibliography: 3 titles.
@article{SM_1972_18_4_a2,
author = {A. A. Roitman},
title = {Rational equivalence of zero-cycles},
journal = {Sbornik. Mathematics},
pages = {571--588},
year = {1972},
volume = {18},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_18_4_a2/}
}
A. A. Roitman. Rational equivalence of zero-cycles. Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 571-588. http://geodesic.mathdoc.fr/item/SM_1972_18_4_a2/
[1] D. Mumford, “Rational equivalence of $0$-cycles on surfaces”, Math. Kyoto Univ., 9:2 (1969), 195–204 | MR | Zbl
[2] A. A. Roitman, “$\Gamma$-ekvivalentnost nulmernykh tsiklov”, Matem. sb., 86(128) (1971), 557–570 | MR | Zbl
[3] I. R. Shafarevich, Algebraicheskie poverkhnosti, Trudy Matem. in-ta im. V. A. Steklova, LXXV, 1965 | MR | Zbl