On the expansion of an entire function of finite order in the eigenfunctions of a~differential operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 559-570
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we consider the operator $L$ which is induced in the space $\mathscr E_p$ of entire functions of order $\rho$ by the operator $l[y]=y^{(n)}+p_{n-2}y^{(n-2)}+\dots+p_0y$ and the boundary conditions $F_i[y]=0$, $i=1,2,\dots,n$. Here $p_{n-2}(z),\dots,p_0(z)$ are polynomials and $F_i(y)$ is a linear functional in $\mathscr E_p$. We establish the completeness of the eigenfunctions of the operator $L$, show the possibility of expansion in terms of these eigenfunctions, and estimate the rate of convergence of such an expansion.
Bibliography: 10 titles.
			
            
            
            
          
        
      @article{SM_1972_18_4_a1,
     author = {V. A. Tkachenko},
     title = {On the expansion of an entire function of finite order in the eigenfunctions of a~differential operator},
     journal = {Sbornik. Mathematics},
     pages = {559--570},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_4_a1/}
}
                      
                      
                    TY - JOUR AU - V. A. Tkachenko TI - On the expansion of an entire function of finite order in the eigenfunctions of a~differential operator JO - Sbornik. Mathematics PY - 1972 SP - 559 EP - 570 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_18_4_a1/ LA - en ID - SM_1972_18_4_a1 ER -
V. A. Tkachenko. On the expansion of an entire function of finite order in the eigenfunctions of a~differential operator. Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 559-570. http://geodesic.mathdoc.fr/item/SM_1972_18_4_a1/
