The multidimensional Plateau problem in Riemannian manifolds
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 487-527

Voir la notice de l'article provenant de la source Math-Net.Ru

There always exists a soap film $X$ “spanning the hole” in a fixed closed wire contour $A$, and it turns out to be a minimal surface (i.e. any small perturbation increases its area). The mathematical solution of this two-dimensional Plateau problem was given by Douglas, Courant and Morrey. In dimensions greater than two, the multidimensional Plateau problem remained open. We shall consider the class of all $k$-dimensional films $X$ which have as a boundary a fixed $(k-1)$-dimensional submanifold $A$ such that each film $X$ admits a parametrization (i.e. it can be represented as the image of some manifold $W$ with boundary $A$ under a continuous function $f$ which is the identity on $A$). Is it possible to find a minimal film $X_0$ in this class? The solution of this problem, formulated in a new language, was obtained by using extraordinary homology and cohomology theories. Bibliography: 15 titles.
@article{SM_1972_18_3_a6,
     author = {A. T. Fomenko},
     title = {The multidimensional {Plateau} problem in {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {487--527},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a6/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - The multidimensional Plateau problem in Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 487
EP  - 527
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_3_a6/
LA  - en
ID  - SM_1972_18_3_a6
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T The multidimensional Plateau problem in Riemannian manifolds
%J Sbornik. Mathematics
%D 1972
%P 487-527
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_3_a6/
%G en
%F SM_1972_18_3_a6
A. T. Fomenko. The multidimensional Plateau problem in Riemannian manifolds. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 487-527. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a6/