The multidimensional Plateau problem in Riemannian manifolds
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 487-527 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There always exists a soap film $X$ “spanning the hole” in a fixed closed wire contour $A$, and it turns out to be a minimal surface (i.e. any small perturbation increases its area). The mathematical solution of this two-dimensional Plateau problem was given by Douglas, Courant and Morrey. In dimensions greater than two, the multidimensional Plateau problem remained open. We shall consider the class of all $k$-dimensional films $X$ which have as a boundary a fixed $(k-1)$-dimensional submanifold $A$ such that each film $X$ admits a parametrization (i.e. it can be represented as the image of some manifold $W$ with boundary $A$ under a continuous function $f$ which is the identity on $A$). Is it possible to find a minimal film $X_0$ in this class? The solution of this problem, formulated in a new language, was obtained by using extraordinary homology and cohomology theories. Bibliography: 15 titles.
@article{SM_1972_18_3_a6,
     author = {A. T. Fomenko},
     title = {The multidimensional {Plateau} problem in {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {487--527},
     year = {1972},
     volume = {18},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a6/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - The multidimensional Plateau problem in Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 487
EP  - 527
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_3_a6/
LA  - en
ID  - SM_1972_18_3_a6
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T The multidimensional Plateau problem in Riemannian manifolds
%J Sbornik. Mathematics
%D 1972
%P 487-527
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1972_18_3_a6/
%G en
%F SM_1972_18_3_a6
A. T. Fomenko. The multidimensional Plateau problem in Riemannian manifolds. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 487-527. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a6/

[1] E. R. Reifeberg, “Solution of the Plateau problem for $m$-dimensional surfaces of varying topological type”, Acta Math., 104:1 (1960), 1–92 | DOI | MR

[2] E. R. Reifenberg, “An epiperimetric inequality related to the analiticity of minimal surfaces”, Ann. Math., 80:1 (1964), 1–14 | DOI | MR | Zbl

[3] E. R. Reifenberg, “On the analiticity of minimal surfaces”, Ann. Math., 80:1 (1964), 15–21 | DOI | MR | Zbl

[4] Ch. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966 | MR | Zbl

[5] H. Federer, Geometric measure theory, Springer-Verlag, Berlin, 1969 | MR

[6] F. J. ALmgren, “Existence and regularity almost everywhere of solutions to elliptic variational problem among surfaces of varying topological type and singularity structure”, Ann. Math., 87:2 (1968), 321–391 | DOI | MR | Zbl

[7] E. Bombieri, E. De Georgi, E. Ginsti, “Minimal cones and the Bernstein problem”, Invent. Math., 7:3 (1969), 243–268 | DOI | MR | Zbl

[8] S. I. Alber, “Topologiya funktsionalnykh mnogoobrazii i variatsionnoe ischislenie v tselom”, Uspekhi matem. nauk, XXV:4(154) (1970), 57–123 | MR

[9] N. Stinrod, S. Eilenberg, Osnovaniya algebraicheskoi topologii, IL, Moskva, 1958

[10] G. W. Whitehead, “Generalized homology theory”, Trans. Amer. Math. Soc., 102 (1962), 227–283 | DOI | MR | Zbl

[11] H. Edgar, J. Brown, “Cohomology theories”, Ann. Math., 75:1 (1962), 467–484 | MR | Zbl

[12] A. T. Fomenko, “Suschestvovanie i pochti vsyudu regulyarnost minimalnykh kompaktov s zadannymi gomologicheskimi svoistvami”, DAN SSSR, 187:4 (1969), 747–749 | MR | Zbl

[13] A. T. Fomenko, “Gomologicheskie svoistva minimalnykh kompaktov v mnogomernoi zadache Plato”, DAN SSSR, 192:1 (1970), 38–41 | MR | Zbl

[14] A. T. Fomenko, “Mnogomernaya zadacha Plato i osobye tochki minimalnykh kompaktov”, DAN SSSR, 192:2 (1970), 293–296 | MR | Zbl

[15] A. T. Fomenko, “Mnogomernaya zadacha Plato v ekstraordinarnykh teoriyakh gomologii i kogomologii”, DAN SSSR, 200:4 (1971), 797–800 | MR | Zbl