Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 425-471

Voir la notice de l'article provenant de la source Math-Net.Ru

Results obtained by the author in RZhMat., 1972, 6B684 are generalized to the case of a countable set of indices $\mathfrak N$. This allows the author to find necessary and sufficient conditions for the existence of a system of boundary-value problems with simple spectrum, having a given set of eigenvalues and weight numbers. Bibliography: 10 titles.
@article{SM_1972_18_3_a4,
     author = {Z. I. Leibenzon},
     title = {Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem},
     journal = {Sbornik. Mathematics},
     pages = {425--471},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a4/}
}
TY  - JOUR
AU  - Z. I. Leibenzon
TI  - Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 425
EP  - 471
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_3_a4/
LA  - en
ID  - SM_1972_18_3_a4
ER  - 
%0 Journal Article
%A Z. I. Leibenzon
%T Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem
%J Sbornik. Mathematics
%D 1972
%P 425-471
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_3_a4/
%G en
%F SM_1972_18_3_a4
Z. I. Leibenzon. Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 425-471. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a4/