On $H$-closed extensions of $\theta$-proximity spaces
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 407-424
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we introduce the concept of extension of a $\theta$-proximity space (see V. V. Fedorchuk, Perfect irreducible mappings and generalized proximities, Math. Sb. (N.S.) 76(118) (1968), 513–536). It is proved that every $\theta$-proximity space has an $H$-closed extension. In the set of $\theta$-proximity $H$-closed extensions of a given $\theta$-proximity space there is a least element.
Bibliography: 11 titles.
@article{SM_1972_18_3_a3,
author = {V. V. Fedorchuk},
title = {On $H$-closed extensions of $\theta$-proximity spaces},
journal = {Sbornik. Mathematics},
pages = {407--424},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a3/}
}
V. V. Fedorchuk. On $H$-closed extensions of $\theta$-proximity spaces. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 407-424. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a3/