Complete families of deformations of germs of complex spaces
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 397-406
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the existence of a complete family of deformations of a germ of a complex space $X$ is proved in case $\dim_\mathbf C\operatorname{Ex}^1(X)<\infty$. Bibliography: 5 titles.
@article{SM_1972_18_3_a2,
author = {I. F. Donin},
title = {Complete families of deformations of germs of complex spaces},
journal = {Sbornik. Mathematics},
pages = {397--406},
year = {1972},
volume = {18},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a2/}
}
I. F. Donin. Complete families of deformations of germs of complex spaces. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 397-406. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a2/
[1] G. N. Tyurina, “Lokalno poluuniversalnye ploskie deformatsii izolirovannykh osobennostei kompleksnykh prostranstv”, Izv. AN SSSR, seriya matem., 33 (1969), 1026–1058 | Zbl
[2] M. Shlezinger, “Funktory na kategorii artinovykh kolets”, Matematika, 15:4 (1971), 115–129
[3] A. Douady, “Le probleme des modules pour les sons-espaces analytiques compacts d'un espace analytique”, Arm. Inst. Fourier, 16:1 (1966), 1–95 | MR | Zbl
[4] I. F. Donin, “Usloviya trivialnosti deformatsii kompleksnykh struktur”, Matem. sb., 81(123) (1970), 610–621 | MR | Zbl
[5] I. F. Donin, “O banakhovykh analiticheskikh prostranstvakh i prostranstve modulei golomorfnykh rassloenii”, DAN SSSR, 195:5 (1970), 1010–1013 | MR | Zbl