The degree of a~quasi-ruled mapping and a~nonlinear Hilbert problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 373-396
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we present the theory of the degree of a mapping for a class, containing nonlinear (pseudo) differential operators, of nonlinear mappings in Banach spaces. This theory is applied to prove the existence of solutions to nonlinear boundary value problems in the theory of analytic functions, under some purely topological hypotheses.
Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_1972_18_3_a1,
     author = {A. I. Shnirel'man},
     title = {The degree of a~quasi-ruled mapping and a~nonlinear {Hilbert} problem},
     journal = {Sbornik. Mathematics},
     pages = {373--396},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a1/}
}
                      
                      
                    A. I. Shnirel'man. The degree of a~quasi-ruled mapping and a~nonlinear Hilbert problem. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 373-396. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a1/
