The degree of a quasi-ruled mapping and a nonlinear Hilbert problem
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 373-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we present the theory of the degree of a mapping for a class, containing nonlinear (pseudo) differential operators, of nonlinear mappings in Banach spaces. This theory is applied to prove the existence of solutions to nonlinear boundary value problems in the theory of analytic functions, under some purely topological hypotheses. Bibliography: 11 titles.
@article{SM_1972_18_3_a1,
     author = {A. I. Shnirel'man},
     title = {The degree of a~quasi-ruled mapping and a~nonlinear {Hilbert} problem},
     journal = {Sbornik. Mathematics},
     pages = {373--396},
     year = {1972},
     volume = {18},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a1/}
}
TY  - JOUR
AU  - A. I. Shnirel'man
TI  - The degree of a quasi-ruled mapping and a nonlinear Hilbert problem
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 373
EP  - 396
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_3_a1/
LA  - en
ID  - SM_1972_18_3_a1
ER  - 
%0 Journal Article
%A A. I. Shnirel'man
%T The degree of a quasi-ruled mapping and a nonlinear Hilbert problem
%J Sbornik. Mathematics
%D 1972
%P 373-396
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1972_18_3_a1/
%G en
%F SM_1972_18_3_a1
A. I. Shnirel'man. The degree of a quasi-ruled mapping and a nonlinear Hilbert problem. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 373-396. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a1/

[1] J. Moser, “A rapidly convergent iteration method and non-linear differential equations. I”, Ann. scuola Norm. Super. Pisa, ser. III, 20:3 (1966), 265–315 ; Ю. Мозер, “Быстро сходящийся метод итераций и нелинейные дифференциальные уравнения”, Успехи матем. наук, XXIII:4(143) (1968), 179–238 | MR | MR

[2] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, IL, Moskva, 1948

[3] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, Moskva, 1968 | MR

[4] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, Moskva, 1965 | MR | Zbl

[5] A. I. Guseinov, “Teoremy suschestvovaniya i edinstvennosti dlya nelineinykh,singulyarnykh integralnykh uravnenii”, Matem. sb., 20(62) (1947), 293–310 | Zbl

[6] W. Pogorzelski, “Probleme aux limites d'Hilbert generalise”, Ann. Polon. Math., 2:1 (1965), 136–144 | MR

[7] V. K. Natalevich, “O nelineinom singulyarnom integralnom uravnenii i nelineinoi kraevoi zadache teorii analiticheskikh funktsii”, DAN SSSR, 83:1 (1952), 19–22 | Zbl

[8] F. E. Browder, “Topology and non-linear functional equations”, Studia Math., 31:2 (1968), 189–204 | MR | Zbl

[9] P. P. Zabreiko, M. A. Krasnoselskii, “Ob odnom prieme polucheniya novykh printsipov nepodvizhnoi tochki”, DAN SSSR, 176:6 (1967), 1233–1235 | MR | Zbl

[10] K. D. Elworthy, “Fredholm maps and $GL_C(E)$-structures”, Bull. Amer. Math. Soc., 74:3 (1968), 582–586 | DOI | MR | Zbl

[11] P. L. Frum-Ketkov, “Ob otobrazheniyakh v gilbertovom prostranstve”, DAN SSSR, 192:6 (1970), 1231–1233 | MR