On the convergence of series of weakly multiplicative systems of functions
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 361-372

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of measurable functions $\{\varphi_k\}$ defined on a measurable space is called weakly multiplicative if it satisfies the relations $$ \int_X\varphi_{k_1}\varphi_{k_2}\dots\varphi_{k_p}\,d\mu=0\quad(\forall p\geqslant2,\ k_1\dots). $$ In this paper the convergence in the metric of $L_p$ and a.e. is investigated for series of weakly multiplicative system of functions. One of the results is: {\it If $\{\varphi_k\}$ is weakly multiplicative and $\sup_k\|\varphi_k\|_p\leqslant M$ for some $p>2,$ then any series $\sum c_k\varphi_k$ with coefficients in $l_2$ converges unconditionally a.e. and in $L_p$}. For $p=2n$, instead of weak multiplicativity it is sufficient to require the condition $\int_X\varphi_{k_1}\dots\varphi_{k_{2n}}\,d\mu=0$ ($\forall k_1\dots$). Bibliography: 13 titles.
@article{SM_1972_18_3_a0,
     author = {V. F. Gaposhkin},
     title = {On the convergence of series of weakly multiplicative systems of functions},
     journal = {Sbornik. Mathematics},
     pages = {361--372},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a0/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - On the convergence of series of weakly multiplicative systems of functions
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 361
EP  - 372
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_3_a0/
LA  - en
ID  - SM_1972_18_3_a0
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T On the convergence of series of weakly multiplicative systems of functions
%J Sbornik. Mathematics
%D 1972
%P 361-372
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_3_a0/
%G en
%F SM_1972_18_3_a0
V. F. Gaposhkin. On the convergence of series of weakly multiplicative systems of functions. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 361-372. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a0/