On the convergence of series of weakly multiplicative systems of functions
Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 361-372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of measurable functions $\{\varphi_k\}$ defined on a measurable space is called weakly multiplicative if it satisfies the relations $$ \int_X\varphi_{k_1}\varphi_{k_2}\dots\varphi_{k_p}\,d\mu=0\quad(\forall p\geqslant2,\ k_1<k_2<\dots<k_p). $$ In this paper the convergence in the metric of $L_p$ and a.e. is investigated for series of weakly multiplicative system of functions. One of the results is: {\it If $\{\varphi_k\}$ is weakly multiplicative and $\sup_k\|\varphi_k\|_p\leqslant M$ for some $p>2,$ then any series $\sum c_k\varphi_k$ with coefficients in $l_2$ converges unconditionally a.e. and in $L_p$}. For $p=2n$, instead of weak multiplicativity it is sufficient to require the condition $\int_X\varphi_{k_1}\dots\varphi_{k_{2n}}\,d\mu=0$ ($\forall k_1<\dots). Bibliography: 13 titles.
@article{SM_1972_18_3_a0,
     author = {V. F. Gaposhkin},
     title = {On the convergence of series of weakly multiplicative systems of functions},
     journal = {Sbornik. Mathematics},
     pages = {361--372},
     year = {1972},
     volume = {18},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_3_a0/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - On the convergence of series of weakly multiplicative systems of functions
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 361
EP  - 372
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_3_a0/
LA  - en
ID  - SM_1972_18_3_a0
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T On the convergence of series of weakly multiplicative systems of functions
%J Sbornik. Mathematics
%D 1972
%P 361-372
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1972_18_3_a0/
%G en
%F SM_1972_18_3_a0
V. F. Gaposhkin. On the convergence of series of weakly multiplicative systems of functions. Sbornik. Mathematics, Tome 18 (1972) no. 3, pp. 361-372. http://geodesic.mathdoc.fr/item/SM_1972_18_3_a0/

[1] G. Aleksich, Problemy skhodimosti ortogonalnykh ryadov, IL, Moskva, 1963 | MR

[2] P. Révész, “A convergence theorem of orthogonal series”, Acta Sci. Math., 27:3–4 (1966), 253–260 | MR | Zbl

[3] V. F. Gaposhkin, “Zamechanie k odnoi rabote P. Revesha o multiplikativnykh sistemakh funktsii”, Matem. zametki, 1:6 (1967), 653–656 | Zbl

[4] F. Móricz, “Inequalities and theorems concerning strongly multiplicative systems”, Acta Sci. Math., 29:1–2 (1968), 13–29 | MR

[5] V. F. Gaposhkin, “Tsentralnaya predelnaya teorema dlya silno multiplikativnykh sistem funktsii”, Matem. zametki, 6:4 (1969), 443–450

[6] V. F. Gaposhkin, “Lakunarnye ryady i nezavisimye funktsii”, Uspekhi matem. nauk, XXI:6(132) (1966), 3–82

[7] V. F. Gaposhkin, “K zakonu povtornogo logarifma dlya silno multiplikativnykh sistem”, Teoriya veroyatn., 14:3 (1969), 511–516 | MR | Zbl

[8] G. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, Fizmatgiz, Moskva, 1958

[9] D. Burkholder, “Martingale transforms”, Ann. Math. Statist., 37:6 (1966), 1494–1504 | DOI | MR | Zbl

[10] P. L. Ulyanov, “Raskhodyaschiesya ryady Fure klassa $L_p$ ($p\geqslant2$)”, DAN SSSR, 137:4 (1961), 786–789 | MR | Zbl

[11] I. A. Ibragimov, Yu. L. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, Moskva, 1965

[12] P. Révész, “$M$-mixing systems. I”, Acta Math. Acad. Sci. Hung., 20:3–4 (1969), 431–442 | DOI | MR | Zbl

[13] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961