Groups of conformal transformations of Riemannian spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 285-301
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that if a Riemannian space $(M,g)$ of class $C^\infty$ has a connected group of conformal transformations which leaves no conformally given metric $e^\sigma_g$ invariant, then $(M,g)$ is globally conformal to a sphere $(S^n,g_0)$ or to Euclidean space $(E^n,g_0)$.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1972_18_2_a8,
     author = {D. V. Alekseevskii},
     title = {Groups of conformal transformations of {Riemannian} spaces},
     journal = {Sbornik. Mathematics},
     pages = {285--301},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/}
}
                      
                      
                    D. V. Alekseevskii. Groups of conformal transformations of Riemannian spaces. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 285-301. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/
