Groups of conformal transformations of Riemannian spaces
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 285-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that if a Riemannian space $(M,g)$ of class $C^\infty$ has a connected group of conformal transformations which leaves no conformally given metric $e^\sigma_g$ invariant, then $(M,g)$ is globally conformal to a sphere $(S^n,g_0)$ or to Euclidean space $(E^n,g_0)$. Bibliography: 12 titles.
@article{SM_1972_18_2_a8,
     author = {D. V. Alekseevskii},
     title = {Groups of conformal transformations of {Riemannian} spaces},
     journal = {Sbornik. Mathematics},
     pages = {285--301},
     year = {1972},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/}
}
TY  - JOUR
AU  - D. V. Alekseevskii
TI  - Groups of conformal transformations of Riemannian spaces
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 285
EP  - 301
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/
LA  - en
ID  - SM_1972_18_2_a8
ER  - 
%0 Journal Article
%A D. V. Alekseevskii
%T Groups of conformal transformations of Riemannian spaces
%J Sbornik. Mathematics
%D 1972
%P 285-301
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/
%G en
%F SM_1972_18_2_a8
D. V. Alekseevskii. Groups of conformal transformations of Riemannian spaces. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 285-301. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/

[1] J. Leiong-Ferrand, “Transformations conformes et quasiconformes des varietes riemanniennes; application a la demonstration d'une conjecture de A. Lichnerowicz”, C. R. Acad. Sci. Paris, 269:14 (1969), A583–586

[2] M. Obata, A. I. Ledger, “Transformations conformes des varietes riemanniennes compactes”, C. R. Acad. Sci. Paris, 270 (1970), A459–A461 | MR

[3] M. Obata, “The conjectures on conformal transformations of riemannian manifolds”, Bull. Amer. Math. Soc., 77:2 (1971), 265–270 | DOI | MR | Zbl

[4] K. Yano, T. Nagano, “Einstein spaces admitting a oneparameter group of conformal transformations”, Ann. Math., 69:2 (1959), 451–461 | DOI | MR | Zbl

[5] K. Yano, M. Obata, “Conformal changes of riemannien metric”, J. Diff. Geom., 4:1 (1970) | MR | Zbl

[6] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, Moskva, 1970 | MR | Zbl

[7] N. Burbaki, Obschaya topologiya, Nauka, Moskva, 1969 | MR

[8] N. Burbaki, Obschaya topologiya, Fizmatgiz, Moskva, 1958

[9] M. M. Postnikov, Vvedenie v teoriyu Morsa, Nauka, Moskva, 1971 | MR

[10] N. Burbaki, Integrirovanie, Nauka, Moskva, 1970 | MR

[11] L. Auslender, “Bieberbach's theorems on space groups and discrete uniform subgroups of Lie grops. II”, Amer. J. Math., 83:2 (1961), 276–280 | DOI | MR

[12] L. P. Eizenkhart, Rimanova geometriya, IL, Moskva, 1948