Groups of conformal transformations of Riemannian spaces
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 285-301

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a Riemannian space $(M,g)$ of class $C^\infty$ has a connected group of conformal transformations which leaves no conformally given metric $e^\sigma_g$ invariant, then $(M,g)$ is globally conformal to a sphere $(S^n,g_0)$ or to Euclidean space $(E^n,g_0)$. Bibliography: 12 titles.
@article{SM_1972_18_2_a8,
     author = {D. V. Alekseevskii},
     title = {Groups of conformal transformations of {Riemannian} spaces},
     journal = {Sbornik. Mathematics},
     pages = {285--301},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/}
}
TY  - JOUR
AU  - D. V. Alekseevskii
TI  - Groups of conformal transformations of Riemannian spaces
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 285
EP  - 301
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/
LA  - en
ID  - SM_1972_18_2_a8
ER  - 
%0 Journal Article
%A D. V. Alekseevskii
%T Groups of conformal transformations of Riemannian spaces
%J Sbornik. Mathematics
%D 1972
%P 285-301
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/
%G en
%F SM_1972_18_2_a8
D. V. Alekseevskii. Groups of conformal transformations of Riemannian spaces. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 285-301. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a8/