Symmetric Banach algebras of operators in a space of type $\Pi_1$
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 267-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a complete system of models of complete $I$-symmetric algebras of operators in a space of type $\Pi_1$, which leave invariant at least one degenerate subspace in $\Pi_1$. The results obtained are applied in the proof of an analog of von Neumann's double commutator theorem, and also in the determination of necessary and sufficient conditions for the reflexivity of weakly closed $I$-symmetric algebras of operators in $\Pi_1$. Bibliography: 14 titles.
@article{SM_1972_18_2_a7,
     author = {V. S. Shulman},
     title = {Symmetric {Banach} algebras of operators in a~space of type $\Pi_1$},
     journal = {Sbornik. Mathematics},
     pages = {267--283},
     year = {1972},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/}
}
TY  - JOUR
AU  - V. S. Shulman
TI  - Symmetric Banach algebras of operators in a space of type $\Pi_1$
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 267
EP  - 283
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/
LA  - en
ID  - SM_1972_18_2_a7
ER  - 
%0 Journal Article
%A V. S. Shulman
%T Symmetric Banach algebras of operators in a space of type $\Pi_1$
%J Sbornik. Mathematics
%D 1972
%P 267-283
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/
%G en
%F SM_1972_18_2_a7
V. S. Shulman. Symmetric Banach algebras of operators in a space of type $\Pi_1$. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 267-283. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/

[1] M. A. Naimark, “Kommutativnye algebry operatorov v prostranstve”, Rev. Roum. Math. Pure et Appl., 9:6 (1964), 499–528 | MR | Zbl

[2] A. I. Loginov, “Banakhovy kommutativnye simmetrichnye algebry operatorov v prostranstve $\Pi_1$”, DAN SSSR, 179:6 (1968), 1276–1278 | MR | Zbl

[3] M. A. Naimark, “Struktura unitarnykh predstavlenii lokalno bikompaktnykh $\Pi_1$ grupp v prostranstve $\Pi_1$”, Izv. AN SSSR, seriya matem., 29 (1965), 689–700 | MR | Zbl

[4] R. S. Ismagilov, “O koltsakh operatorov v prostranstve s indefinitnoi metrikoi”, DAN SSSR, 158:2 (1964), 268–270 | MR | Zbl

[5] I. S. Iokhvidov, M. G. Krein, “Spektralnaya teoriya operatorov v prostranstve s indefinitnoi metrikoi. I”, Trudy Mosk. matem. ob-va, V (1966), 367–372

[6] I. Kaplansky, “A theorem on rings of operators”, Pacific J. Math., 1 (1951), 227–232 | MR | Zbl

[7] C. A. Akemann, “The dual spaces of operator algebras”, Trans. Amer. Math. Soc., 126:2 (1967), 286–302 | DOI | MR | Zbl

[8] D. C. Taylor, “The strict topology for double centraliser algebras”, Trans. Amer. Math. Soc., 150:2 (1969), 633–643 | DOI | MR

[9] N. Th. Varopoulos, “Sur les formes positives d'une algebre de Banach”, C. R. Acad. Sci. Paris, 258 (1964), 2465–2467 | MR | Zbl

[10] M. A. Rieffel, “On the continuity of certain intertwining operators, centralisers and positive linear functional”, Proc. Amer. Math. Soc., 20:2 (1969), 455–457 | DOI | MR | Zbl

[11] H. Radjavi, P. Rosenthal, “Invariant subspaces and weakly closed algebras”, Amer. J. Math., 51:1 (1969), 683–692 | DOI | MR

[12] V. I. Liberzon, V. S. Shulman, “Nevyrozhdennye algebry operatorov v prostranstvakh s indefinitnoi metrikoi”, Izv. AN SSSR, seriya matem., 37:3 (1973), 533–538 | MR | Zbl

[13] A. Robertson, V. Robertson, Topologicheskie vektornye prostranstva, Mir, Moskva, 1968

[14] M. A. Naimark, Normirovannye koltsa, Nauka, Moskva, 1968 | MR | Zbl