Symmetric Banach algebras of operators in a~space of type $\Pi_1$
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 267-283

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a complete system of models of complete $I$-symmetric algebras of operators in a space of type $\Pi_1$, which leave invariant at least one degenerate subspace in $\Pi_1$. The results obtained are applied in the proof of an analog of von Neumann's double commutator theorem, and also in the determination of necessary and sufficient conditions for the reflexivity of weakly closed $I$-symmetric algebras of operators in $\Pi_1$. Bibliography: 14 titles.
@article{SM_1972_18_2_a7,
     author = {V. S. Shulman},
     title = {Symmetric {Banach} algebras of operators in a~space of type $\Pi_1$},
     journal = {Sbornik. Mathematics},
     pages = {267--283},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/}
}
TY  - JOUR
AU  - V. S. Shulman
TI  - Symmetric Banach algebras of operators in a~space of type $\Pi_1$
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 267
EP  - 283
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/
LA  - en
ID  - SM_1972_18_2_a7
ER  - 
%0 Journal Article
%A V. S. Shulman
%T Symmetric Banach algebras of operators in a~space of type $\Pi_1$
%J Sbornik. Mathematics
%D 1972
%P 267-283
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/
%G en
%F SM_1972_18_2_a7
V. S. Shulman. Symmetric Banach algebras of operators in a~space of type $\Pi_1$. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 267-283. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/