Symmetric Banach algebras of operators in a~space of type $\Pi_1$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 267-283
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct a complete system of models of complete $I$-symmetric algebras of operators in a space of type $\Pi_1$, which leave invariant at least one degenerate subspace in $\Pi_1$. The results obtained are applied in the proof of an analog of von Neumann's double commutator theorem, and also in the determination of necessary and sufficient conditions for the reflexivity of weakly closed $I$-symmetric algebras of operators in $\Pi_1$.
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1972_18_2_a7,
     author = {V. S. Shulman},
     title = {Symmetric {Banach} algebras of operators in a~space of type $\Pi_1$},
     journal = {Sbornik. Mathematics},
     pages = {267--283},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/}
}
                      
                      
                    V. S. Shulman. Symmetric Banach algebras of operators in a~space of type $\Pi_1$. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 267-283. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a7/
